Proceedings of the IADIS International Conference
APPLIED COMPUTING

Timisoara, Romania 14-16 October

Edited by

Hans Weghorn
Pedro Isaias
Radu Vasiu

S international association for development of the information society g BN

IADIS INTERNATIONAL CONFERENCE

APPLIED COMPUTING 2010

PROCEEDINGS OF THE
IADIS INTERNATIONAL CONFERENCE

APPLIED COMPUTING 2010

TIMISOARA, ROMANIA

14-16 October 2010

Organised by

IADIS
International Association for Development of the Information Society

Co-Organised by

Copyright 2010
IADIS Press
All rights reserved

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other way, and storage in data banks.
Permission for use must always be obtained from IADIS Press. Please contact secretariat@iadis.org

Edited by Hans Weghorn, Pedro Isaias and Radu Vasiu

Associate Editors: Luis Rodrigues and Patricia Barbosa

ISBN: 978-972-8939-30-4

TABLE OF CONTENTS

FOREWORD
PROGRAM COMMITTEE
KEYNOTE LECTURES

FULL PAPERS

FUNCTIONAL TESTING CRITERIA BASED ON FEATURE MODELING FOR
SOFTWARE PRODUCT LINE

Danilo Modesto de Sousa and Marcelo Fantinato

A NOVEL METHODOLOGY TO FORMALIZE THE REQUIREMENTS
ENGINEERING PROCESS WITH THE USE OF NATURAL LANGUAGE
Marinos G. Georgiades and Andreas S. Andreou

FEATUREOUS: INFRASTRUCTURE FOR FEATURE-CENTRIC ANALYSIS OF
OBJECT-ORIENTED SOFTWARE
Andrzej Olszak and Bo Norregaard Jorgensen

STRUCTURED AND FLEXIBLE GRAY-BOX COMPOSITION: APPLICATION
TO TASK RESCHEDULING FOR GRID BENCHMARKING
Ismael Mejia and Mario Siidholt

AN HYBRYD APPROACH FOR MODELS COMPARISON
Samia Benabdellah Chaouni, Mounia Fredj and Salma Mouline

ADAPTIVE PRE-PROCESSING OF LARGE POINT CLOUDS FROM OPTICAL
3D SCANNERS
Erik Trostmann, Christian Teutsch and Dirk Berndt

SLOTS — A MODELING LANGUAGE FOR SCHEDULING PROBLEMS
Thomas Scheidl, Giinther Blaschek, Peter Feigl and Norbert Lebersorger

ACCELERATE TWO-DIMENSIONAL CONTINUOUS DYNAMIC
PROGRAMMING BY MEMORY REDUCTION AND PARALLEL PROCESSING
Yukihiro Yoshida, Koushi Yamaguchi, Yuichi Yaguchi, Yuichi Okuyama, Ken-ichi Kuroda and
Ryuichi Oka

EFFECTIVE RESOURCES ALLOCATION IN A P2P OVERLAY TO EXECUTE
GRID WORKLOADS

Rocco Aversa, Luigi Buonanno, Beniamino Di Martino and Salvatore Venticinque

X
xi

XV

11

27

35

43

53

61

DESIGN AND DEVELOPMENT OF CONSTRUCTIVIST EDUCATIONAL
SOFTWARE TO DEAL WITH STUDENTS’ EMPIRICAL IDEAS ABOUT BASIC
OPTICS CONCEPTS

Tekos George and Solomonidou Christina

A METHODOLOGY FOR ENGINEERING REAL-TIME INTERACTIVE
MULTIMEDIA APPLICATIONS ON SERVICE ORIENTED
INFRASTRUCTURES

Dimosthenis Kyriazis, Ralf Einhorn, Lars Fiirst, Michael Braitmaier, Dominik Lamp,
Kleopatra Konstanteli, George Kousiouris, Andreas Menychtas, Eduardo Oliveros,
Neil Loughran and Bassem Nasser

A SELF LEARNING CONTEXT-AWARE DOMOTICS SYSTEM TO
AUTOMATE USER ACTIONS
Niels Pardons, Natalie Kcomt Ché, Yves Vanrompay and Yolande Berbers

A CROSS-FORMAT ARCHITECTURE FOR PROFESSIONAL PUBLISHING

Angelo Di lorio, Antonio Feliziani, Luca Furini and Fabio Vitali

A SEMANTIC-BASED RECOMMENDER SYSTEM FOR THE SBTVD

Glauco da Silva and Laércio Augusto Baldochi Junior

SELF ORGANIZING MAPS FOR PUBLIC-CYCLING TRANSPORT
MODELLING AND MANAGEMENT
Pablo Gay, Beatriz Lopez, Albert Pla and Joaquim Meléndez

EMERGENCY DETECTION BASED ON PROBABILISTIC MODELING IN
AAL-ENVIRONMENTS
Bjoern-Helge Busch, Alexander Kujath and Ralph Welge

FINDING THE TREE IN THE FOREST
Rikard Kénig, Ulf Johansson and Lars Niklasson

EVALUATING THE QUALITY OF SERVICE OF A DATA WAREHOUSING
SYSTEM

Nélio Guimardes and Orlando Belo

ACCESS TO RELATIONAL DATABASES IN NATURAL LANGUAGE
Nikos Papadakis, Pavlos Kefalas and Aris Apostolakis

A MANET WITH CACHING CAPABILITIES VISUALIZATION TOOL
F.J. Gonzdlez-Cariete, L.B. Rios-Sepulveda, E. Casilari, and A. Trivifio-Cabrera

SEQUENTIAL AND DISTRIBUTED HYBRID GA-SA ALGORITHMS FOR
ENERGY OPTIMIZATION IN EMBEDDED SYSTEMS
Maha Idrissi Aouad, Lhassane Idoumghar, René Schott and Olivier Zendra

A LUA VIRTUAL MACHINE FOR RESOURCE-CONSTRAINED EMBEDDED
SYSTEMS
Alex de Magalhdes Machado and Antonio Augusto Fréhlich

SUPPORTING INTERMOLECULAR INTERACTION ANALYSES OF
FLEXIBLE-RECEPTOR DOCKING SIMULATIONS
Ana T. Winck, Karina S. Machado, Osmar Norberto de Souza and Duncan D. Ruiz

REFINEMENT OF A GENETIC ALGORITHM FOR DOCUMENT CLUSTERING

José Luis Castillo Sequera, José R. Fernandez del Castillo Diez and Leon Gonzdlez Sotos

Vi

71

85

96

103

111

119

127

135

143

151

159

167

175

183

191

FACE RETRIEVAL USING SALIENT FACIAL POINTS

Luigi Cinque and Enver Sangineto

SHORT PAPERS

DESIGN OF A MULTIPLE-SERVER SYSTEM FOR COOPERATIVE
LEARNING AND EMERGENCY COMMUNICATION

Yoshio Moritoh , Yoshiro Imai, Hitoshi Inomo, Shigeaki Ogose, Tetsuo Hattori and
Wataru Shiraki

IMPACT OF GATEWAY DISCOVERY ON TCP-CONNECTIONS IN MANETS

A. Trivifio Cabrera, M. C. Gonzalez Linares, E. Casilari and F. J. Gonzalez Cariete

ENHANCED VOIP SOLUTION FOR CONTROLLING A ROBOT-COMPANION
Z. Mapundu and Th. Simonnet

COMPARISON OF DISCRETIZATION METHODS OF FLEXIBLE-RECEPTOR
DOCKING DATA FOR ANALYSES BY DECISION TREES
Karina S. Machado, Ana T. Winck, Duncan D. Ruiz and Osmar Norberto de Souza

COMPONENT INTERCONNECTION INFERENCE TOOL SUPPORTING THE
DESIGN OF SMALL FPGA-BASED EMBEDDED SYSTEMS
Zbynek Krivka, Ota Jirak and Zdenék Vasicek

MINIATURE SIP FOR EMBEDDED SYSTEMS

Leonardo Maccari Rufino and Antonio Augusto Fréhlich

A BLENDED LEARNING APPROACH IN SOFTWARE DEVELOPMENT
COURSE: A CASE STUDY

Kechi Hirama

LANGUAGE MODELING IN THE CONTEXT OF A MDE PROCESS
Thanh Thanh Le Thi and Pierre Bazex

GENERAL MODELLING APPROACH BASED ON THE INTENSIVE USE OF
ARCHITECTURAL AND DESIGN PATTERNS

Anna Medve, Laszlo Kozma and Ileana Ober

A COMPUTATION EVALUATION OF SOME SOFTWARE FOR
MATHEMATICAL PROGRAMMING

Themistoklis Glavelis, Nikolaos Ploskas and Nikolaos Samaras

REFLECTION PAPERS

MOBILE COMMUNICATION APPLICATION FRAMEWORK FOR HEALTH
CARE
Toshiyuki Maeda, Yuki Ando, Yae Fukushige and Takayuki Asada

vii

199

209

215

220

225

230

235

239

245

251

256

263

TRACKING ELECTRONIC DOCUMENTS IN ORGANIZATIONS
Majed AbuSafiya

ACCESSIBILITY AND USABILITY FOR PEOPLE WITH VISUAL DISABILITY
Tiago Frang¢a Melo de Lima and Janicy Aparecida Pereira Rocha

AN APPROACH TO PREVENT STEMMING SIDE EFFECTS IN
INFORMATION RETRIEVAL
Ahmet Arslan and Ozgur Yilmazel

POSTERS

IMPROVING THE RESILIENCE OF MULTIPATH TCP BY LATENCY
SUPERVISION

Florin-Josef Lataretu and Corneliu loan Toma

WIN32 PE MALWARE AUTO-ANALYSIS USING KERNEL CALL-BACK
MECHANISM
JooHyung Oh, ChaeTae Im and Hyuncheol Jeong

A METHODOLOGY FOR COLABORATIVE AND COMPONENT BASED
SOFTWARE DEVELOPMENT

Jonathan Bar-Magen Numhauser, José Maria Gutiérrez Martinez, Luis De Marcos and
Jose Antonio Gutierrez De Mesa

DIGITAL SLIDESHOW PERFORMED LIVE USING THE “MOTORWAY”
APPLICATION

Cristian Tecu, Adrian Popescu and Radu Vasiu

AUTHOR INDEX

viii

267

271

275

281

284

287

291

FOREWORD

These proceedings contain the papers of the IADIS Applied Computing 2010, which was
organised by the International Association for Development of the Information Society and
co-organised by "Politehnica" University of Timisoara, Romania, 14-16 October.

The TADIS Applied Computing 2010 conference aims to address the main issues of
concern within the applied computing area and related fields. This conference covers
essentially technical aspects. The applied computing field is divided into more detailed
areas.

The following thirty-six areas have been object of paper and poster submissions:

Agent Systems and Applications, Algorithms, Applied Information Systems,
Bioinformatics, Case Studies and Applications, Communications, Data Mining, Database
Systems, E-Commerce Theory and Practice, Embedded Systems, Evaluation and
Assessment, Global Tendencies, Grid Computing, Information Retrieval, Intelligent
Systems, Mobile Networks and Systems, Multimedia, Networking, Object Orientation,
Parallel and Distributed Systems, Payment Systems, Programming Languages, Protocols
and Standards, Security, Semantic Web, Software Engineering, Storage Issues,
Technologies for E-Learning, Wireless Applications, WWW Applications, WWW
Technologies, Ubiquitous Computing, Usability Issues, Virtual Reality, Visualization,
XML and other Extensible Languages

The TADIS Applied Computing 2010 Conference had 130 submissions from 26 countries.
Each submission has been anonymously reviewed by an average of five independent
reviewers, to ensure the final high standard of the accepted submissions. Out of the papers
submitted, 25 got blind referee ratings that published them as full papers, which means that
the acceptance rate was below 20%. Some other submissions were published as short
papers, reflection papers, and posters. Authors of the best published papers in the Applied
Computing 2010 proceedings will be invited to publish extended versions of their papers in
the IADIS International Journal on Computer Science and Information Systems (IJCSIS)
(ISSN 1646-3692) and other selected journals.

The conference, besides the presentation of full papers, short papers, reflection papers, and
posters also includes two keynote presentations from internationally distinguished
researchers: we wish to thank Professor Vasile Baltac, ATIC - IT&C Association of
Romania, Vice-Chairman of World Information Technology and Software Alliance
(WITSA) and President of the Council of European Professional and Informatics Societies
(CEPIS), Romania, and Dr. Alina Andreica, Associate Professor, Head of IT Department,
Babes-Bolyai University, Cluj-Napoca, Romania.

iX

As we all know, a conference requires the effort of many individuals. We would like to
thank all members of the Program Committee for they hard work in reviewing and selecting
the papers that appear in the book of the proceedings. Special thanks also to the auxiliary
reviewers that contributed to the reviewing process.

Last but not the least, we hope that everybody will have a good time in Timisoara, and we
invite all participants for the next edition of the IADIS International Conference Applied
Computing 2011.

Hans Weghorn, BW Cooperative State University Stuttgart, Germany
Program Chair

Pedro Isaias, Universidade Aberta (Portuguese Open University), Portugal
Radu Vasiu, "Politehnica" University of Timisoara, Romania
Conference Co-Chairs

Timisoara, Romania
14 October 2010

PROGRAM COMMITTEE

PROGRAM CHAIR
Hans Weghorn, BW Cooperative State University Stuttgart, Germany

CONFERENCE CO-CHAIRS
Pedro Isaias, Universidade Aberta (Portuguese Open University), Portugal
Radu Vasiu, "Politehnica" University of Timisoara, Romania

COMMITTEE MEMBERS

Adam Wong, Deakin University, Australia
Aijuan Dong, Hood College, USA
Alan Barton, IIT -- National Research Council, Canada
Alberto Ros, Universidad de Murcia, Spain
Ali Masoudi-Nejad, Laboratory of Systems Biology and Bioinformatics, Iran
Ali Shiri, University Of Alberta, Canada
Ana Carolina Lorena, Universidade Federal do ABC, Brazil
Anastasios Doulamis, Technical University Of Crete, Greece
Andreas Andreou, University Of Cyprus, Cyprus
Andres Muiioz, Universidad De Murcia, Spain
Anne-muriel Arigon, Université Montpellier 2, France
Antonio Robles-Gomez, University for Distance Education, Spain
Ateet Bhalla, Ateet Bhalla, NRI Institute of Information Science, India
Aurelio Bermudez, Universidad De Castilla-la Mancha, Spain
Baoying Wang, Waynesburg University, USA
Bastian Koller, Universitét Stuttgart, Germany
Blanca Caminero, Universidad de Castilla-La Mancha, Spain
Carlos Molinero, Universidad Complutense De Madrid, Spain
Carlos Duarte, University Of Lisbon, Portugal
Carmen Carrion, University Of Castilla-la Mancha, Spain
Carmen Ruiz, Universidad De Castilla-la Mancha, Spain
Cecile Favre, Université Lyon 2, France
Cesar Andres, Universidad Complutense De Madrid, Spain
Dick Stenmark, Goteborg University, Sweden
Dimosthenis Kyriazis, National Technical University Of Athens, Greece
Djamila Ouelhadj, University Of Nottingham, United Kingdom
Elias Xidias, University Of Patras, Greece
Enrique Arias, Universidad De Castilla-la Mancha, Spain
Federico Bergenti, University of Parma, Italy
Fei Luo, East China University Of Science & Technology, China

xi

Filippos Azariadis, University Of The Aegean, Greece
Francesca Lonetti, Isti-cnr, Italy
Francisco Garcia, University Of Salamanca, Spain
Giacomo Cabri, University of Modena and Reggio Emilia, Italy
Gilles Hubert, Université Paul Sabatier, France
Grigorios Beligiannis, University Of Western Greece, Greece
Guillaume Cabanac, Université Toulouse 3, France
Hao Wu, Yunnan University, China
Hind Castel, Institut National Des Télécommunications, France
Ivan Jelinek, Czech Technical University, Czech Republic
Jan Krasniewicz, Birmingham City University, United Kingdom
Javier Oliver Villarroya, Technical University Of Valencia, Spain
Jiann-Liang Chen, National Taiwan University of Science and Technolo, Taiwan
Jie Tao, Universitdt Karlsruhe, Germany
Jo Abrantes, University Of Wollongong, Australia
Johannes Meinecke, SAP AG, Germany
Jose Manuel Molina, Universidad Carlos lii De Madrid, Spain
Jose Santa, University of Murcia, Spain
Juan J. Pardo, Universidad De Castilla-la-mancha, Spain
Juan José Sanchez Pefia, Universidad De Alcala, Spain
Julio Calvo, Ciemat, Spain
Konstantinos Giotopoulos, University Of Patras,, Greece
Konstantinos Tserpes, National Technical University Of Athens, Greece
Kuan-Ching Li, Providence University, Taiwan
Kuo-chan Huang, National Taichung University, Taiwan
Luca Anselma, University Of Torino, Italy
Luciano Senger, State University Of Ponta Grossa, Brazil
Manuel Gil Pérez, University of Murcia, Spain
Marcelo Ponciano-Silva, Universidade De Sdo Paulo, Brazil
Marcio De Souza, Universidade Estadual De Ponta Grossa, Brazil
Marco Botta, University Of Torino, Italy
Marcos Quiles, Federal University of Sao Paulo, Brazil
Marek Woda, Wroclaw University Of Technology, Poland
Maria Camila Barioni, Universidade Federal Do Abc, Brazil
Maria N Moreno Garcia, Universidad De Salamanca, Spain
Martin Fredriksson, Blekinge Institute of Technology, Sweden
Matthias Lange, Leibniz Institute Of Plant Genetics And Crop Plant, Germany
Max Chevalier, Université De Toulouse, IRIT, France
Mehmet Sahinkaya, University Of Bath, United Kingdom
Mei-Ling Shyu, University Of Miami, USA
Michael Vrahatis, University Of Patras, Greece
Min-Ling Zhang, Hohai University, China
Miroslav Bures, Czech Technical University in Prague, Czech Republic
Moschopoulos Charalampos, University Of Patras, Greece
Nataliya Rassadko, Universita Degli Studi Di Trento, Italy
Nikolaos Doulamis, National Technical University Of Athens, Greece

xii

Nikolaos Matsatsinis, Technical University Of Crete, Greece
Nikolaos Sapidis, University Of The Aegean, Greece
Olivier Teste, Université Paul Sabatier, France
Patrice C. Roy, Université de Sherbrooke, Canada
Pedro Henrique Bugatti, University Of Sdo Paulo, Brazil
Philipp Wieder, Technical University Of Dortmund, Germany
Pierre Busnel, Université de Sherbrooke , Canada
Qin Ding, East Carolina University, USA
Rafa Al-Qutaish, Al Ain University of Science & Technology, UAE
Rafael Casado, University Of Castilla-La Mancha, Spain
Rami Yared, Japan Advanced Institute Of Science And Technology, Japan
Renato Ishii, Universidade Federal de Mato Grosso Do Sul, Brazil
Riad Mokadem, Paul Sabatier University, France
Ricardo Fernandez, Universidad De Murcia, Spain
Rodrigo Cilla, Universidad Carlos III De Madrid, Spain
Roland Kuebert, University Of Stuttgart, Germany
Ronaldo Prati, Universidade Federal do ABC, Brazil
Salima Benbernou, Université Claude Bernard Lyon 1, France
Sharon Cox, Birmingham City University, United Kingdom
Shu-Ching Chen, Florida International University, USA
Simon Richir, Arts et Metiers ParisTech, France
Spiridon Likothanassis, University Of Patras, Greece
Stephane Maag, Telecom & Management Sudparis, France
Stephanos Mavromoustakos, European University Cyprus - School of Sciences, Cyprus
Tudor -Razvan Niculiu, University "Politehnica" Bucuresti, Romania
Vasilis Delis, Research Academic Computer Technology Institute, Greece
Vassiliki Andronikou, National Technical University Of Athens, Greece
Victor Robles, Technical University Of Madrid, Spain
Vincenzo Deufemia, Universita di Salerno, Italy
Wenbin Jiang, Huazhong University Of Science And Technology, China
Yazid Benazzouz, Orange Labs - France Telecom, France
Yijiao Yu, Central China Normal University, China
Yoshifumi Manabe, NTT Communication Science Laboratories, Japan
Zaher Aghbari, University Of Sharjah, United Arab Emirates

xiii

KEYNOTE LECTURES

ESKILLS - A CHALLENGE FOR THE MODERN SOCIETY

By Professor Vasile Baltac
ATIC - IT&C Association of Romania, Vice-Chairman of World Information
Technology and Software Alliance (WITSA) and President of the Council of
European Professional and Informatics Societies (CEPIS), Romania

Abstract

The paper will discuss why eSkills are important, the eSkills gap, the importance of IT
professionalism, possible standards for professionalism, the impact of User eSkills and business —
university cooperation in ICT.

Information/Knowledge Society needs new skills, the demand has grown rapidly both at pratitioner
level and user level. This demand is quantified as a proposed law, a corollary to Moore’s Law. The
acceleration of innovation in ICT is ananlysed both with accelerating and decelerating factors. The
complexity issue is considered within the debated singularity and Internet’s Omega Point.
Applications are considered a key challenge, as they appear and are implemented at a much reduced
accelerated speed.

eSkills Gap is one of the issues related to advance of ICT. Europe faces shortages and their reasons
are discussed. Solutions to make ICT careers more attractive to young people both males and
females are a key issue for Europe.

Professionalism, professionalism in IT, validation of professionals and researchers are further
discussed in line with CEPIS Vision on professionalism.

elnclusion with its upcoming second digital divide can be a major factor of limitation of ICT
spread.

XV

AN INTEGRATED PORTAL FRAMEWORK FOR PROVIDING WEB
SERVICES AND E-LEARNING FACILITIES

By Dr. Alina Andreica,
Associate Professor, Head of IT Department,
Babes-Bolyai University, Cluj-Napoca, Romania

Abstract

We describe means of creating an integrated web portal framework for providing e-learning
services and dedicated information systems facilities. The portal uses MS technology and provides,
as learning services, management content and e-learning facilities for various user categories,
together with the dedicated information system facilities. The information system facilities are
provided into the web portal by retrieving the dedicated software services from the specific systems
and synchronizing databases based on various technologies (php / postgresql, asp / MS sql). This
web framework has a good extensibility degree and may be used in order to integrate web services
for content sharing and communication, as well as dedicated information system facilities, in
various organization cases

XVi

Full Papers

IADIS International Conference Applied Computing 2010

FUNCTIONAL TESTING CRITERIA BASED ON FEATURE
MODELING FOR SOFTWARE PRODUCT LINE

Danilo Modesto de Sousa and Marcelo Fantinato
School of Arts, Sciences and Humanities (EACH) — University of Sdo Paulo (USP)
Rua Arlindo Béttio, 1000 — 03828-000, Sao Paulo — SP, Brazil

ABSTRACT

Product line (PL) is an approach for the development of similar products with increasing use in the software industry, and
feature modeling is one of the techniques used to represent the product families’ variabilities and commonalities. This
paper introduces a set of criteria for functional testing of software product lines based on feature models. Such criteria are
particularly useful for the business process management domain with Web services as the PL target software. The results
of an experiment to perform a comparison among the criteria and to validate their using feasibility are also presented.

KEYWORDS

Software testing, Testing criteria, Feature modeling, Product line, Business Process Management (BPM).

1. INTRODUCTION

Software testing can be guided by system models that provide information to support test case development
and coverage analysis. Depending on the model nature, testing can be: functional — guided by the external
specification with the aim of exercising different elements of such specification when running tests on the
executable code; or, structural — guided by the internal structure of the generated source code with the aim of
exercising different elements of such code (Pressman, 2004). The main objective is to detect defects as early
as possible during the software development. Since exhaustive testing is unfeasible, testing criteria are used
to assist in the selection of good test cases, i.e. those more likely to find defects (Myers, 1979).

Product Line (PL) is a software engineering approach that promotes the generation of specific products,
from a product family, based on the reuse of a core infrastructure and a well defined set of components (SEl,
2007). Feature modeling is an essential technique for capturing and managing commonalities and variabilities
that can be applied in PL (Kang, et al., 1990; Czarnecki, et al., 2005). An important application domain for
PL is the Business Process Management (BPM), which includes activities that enable the modeling,
execution and analysis of interorganizational business processes (Fantinato, et al., 2010). BPM is commonly
supported by service-oriented computing, mainly through Web services technology.

Companies are increasingly adhering to the PL approach, mainly due to economic reasons because of its
great support for reuse (Linden, et al., 2007). An important concern is the quality assurance of the software
produced by the PL which requires an improvement in test strategies for of this type of approach. This paper
proposes a set of criteria for functional software testing, based on feature models, which can help in choosing
a subset of more efficient test cases for PL, and can be applied for the BPM domain taking into account that
the PL target software are Web services. The objective is providing a more systematic way to select test cases
when applying the PL approach, especially when resources to be used in testing are scarce.

This paper covers the following subjects in its sections: PL and feature modeling concepts; the proposed
testing criteria; the undertaken experimental evaluation; related work; and, the conclusion and future works.

ISBN: 978-972-8939-30-4 © 20010 IADIS

2. SOFTWARE PRODUCT LINE AND FEATURE MODELING

A PL involves a set of similar applications, in a domain, which can be developed from a common generic
architecture and a set of components to populate it. This aims at identifying common aspects and differences
among the software artifacts during the PL development process, in order to clarify the decision points in
which the adaptation of components to generate specific products can be undertaken (Clements & Northrop,
2001). The PL engineering has two life cycles (Linden, et al., 2007; Clements & Northrop, 2001): domain
engineering — involves developing the nucleus of reusable artifacts of the PL, including the PL architecture
and software components; and, application engineering — involves developing specific products, through the
instantiation of the PL architecture developed during domain engineering.

One way to represent common and variable points, during domain engineering, and then select the desired
properties, during application engineering, is the feature modeling technique. A feature is a system property,
relevant to some entity, used to capture common characteristics or differentiate the systems in a product
family (Czarnecki & Antkiewicz, 2005). Features can be mandatory, optional or alternative. A feature model
contains a set of interrelated features and is represented graphically by a tree, where the root represents a
major concept and the descendant nodes represent the children features.

A feature model example is presented in Figure 1. The notation used is proposed by Czarnecki, et al.,
(2005), whose metamodel is presented in Section 2.1. The example presents two basic services provided by
an E-Shop: Payment and Shipping. Payment can be done by Credit Card or Debit Card, and Fraud Detection
can be optionally used. Shipping may be by Land, air, Sea or any combination of these options.

NOTATION

@® VMandatory

=

FraudDetectionl |Payment Typesl | Land | | Air | | Sea |

O Optional
"\ AND
<> OR-Exclusive
. OR-Inclusive

|Credit Cardl |Debit Cardl

Figure 1. Feature model example — virtual store (Antkiewicz & Czarnecki, 2004)

A feature model describes the configuration space of a product family. A family member can be specified
by selecting the desired features from the feature model, considering the variability constraints defined by the
model (as the choice of exactly one feature from a set of alternative ones). An example of configuration for
the model presented in Figure 1 is: choosing Credit Card for Payment, without fraud detection, and
combining Land and Sea for Shipping. This process is called feature configuration (Czarnecki, et al., 2005).

Considering the BPM domain for PL, the features in the model could represent the electronic services
being provided by the organizations involved in an electronic negotiation interested in create a cooperative
and interorganizational business process. Therefore, each partner organization could elaborate its own feature
model, with the features representing structurally the electronic services to be contracted by the other party,
which will form the business process in the end in form of Web services (Fantinato, et al., 2010).

2.1 Cardinality-based Feature M etamodel

The cardinality—based feature metamodel, proposed by Czarnecki, et al., (2005), involves the concepts of

attributes, feature groups, diagram modularization, and cardinalities. The metamodel is presented as a class

diagram in Figure 2. There are three types of features in this feature mo&ao{Heaturethat forms the

root of the different feature diagrams in a model; @GioupedFeature that can only occur in &eature

Group; and, (iii) Solitary Featurethat is, by definition, not RootFeaturenot grouped in &eatureGroup.
Featurescan have arttribute with a TypedValue- String Value or IntegerValue The abstract classes

ContainableByFGand ContainableByFstand for those types of objects that can be containedHapatare

Group and aFeature respectively. AFeatureGroup containsGroupedFeaturesor FDReferenceswhereas

a Feature can includeSolitary Features Feature Groups and FDReferencesDiagram modularization is

achieved by using thEDReferenceclass, which stands for a feature diagram reference. It can refer to only

oneRootFeature but aRootFeaturecan be referred by sevefDReferences

IADIS International Conference Applied Computing 2010

IFeature Groupl | Attribute |.—,| TypedvValue |
| Group cardimaiity | I name h
| T e W
Contain— Contain- Feature String Integer
ableByFG ableByF — Value Value
T % K ? name name
FDRefe-— Grouped Solitary Root % Feature
rence Feature Feature Feature Model

* 1

ity

Figure 2. Cardinality-based feature metamodel (Czarnecki, et al., 2005)

Featureand FeatureGroup cardinalities are represented as attributes in the feature metaredleire
Cardinality defines how often a solitary sub-feature (and possible sub-trees) can be cloned as a child of its
parent feature. SimilarlyGroup Cardinality is a property of the relationship between a parent and a set of
sub-features. AeatureGroup expresses a choice over fAmupedFeaturesin the group.

The following concepts are defined to be used in the next section for the definition to the testing criteria:

. Mandatory feature: is a feature with cardinality [1..1];

. Optional feature: is a solitary feature with cardinality [0..1];

. Alternative feature: is a grouped feature with cardinality [0..1];

. Optativefeature: is a optional feature or an alternative feature;

. Leaf feature: is a feature with no child feature;

. Feature level: represents the distance of a feature in relation to the root feature. For example, for a
feature in the level “4”, the root feature is the fourth feature in its ascendency level;

. Feature level in a group: represents the distance of a grouped feature in relation to the root feature
of the group to which it belongs.

3. FUNCTIONAL TESTING CRITERIA BASED ON FEATURE MODELs

In this section, the functional testing criteria based on feature models are presented. They are proposed to
help in selecting and evaluating test cases when applying PL. A testing criterion here defines a set of required
elements of a feature model, commonly a specific type of feature, which must be covered by the test cases.

Given FM, a feature model, and C, a set of test cases, the set of testing criteria based on feature models is:

. Criteria by featuretype:

. all-features: requires that all features belonging to the feature model FM associated with the PL are
exercised at least once by the set of test cases C;

. all-mandatory-features: requires that all mandatory features belonging to the feature model FM
associated with the PL are exercised at least once by the set of test cases C;

. all-optative-features: requires that all optative (optional or alternative) features belonging to the
feature model FM associated with the PL are exercised at least once by the set of test cases C;

. all-grouped-features-in-level-1: requires that all grouped features of the first level of a group
belonging to the feature model FM associated with the PL are exercised at least once by the set of test cases
G

. all-leaf-features. requires that all leaf features belonging to the feature model FM associated with
the PL are exercised at least once by the set of test cases C.

. Criteriaby treelevel:

. all-features-in-level-1-N (N > 1): requires that all features belonging to the feature model FM
associated with the PL, located from level 1 to level N, are exercised at least once by the set of test cases C. It
represents a “set of similar criteria” as the value N can refer to any level greater or equal to 1, such as 1, 2, 3,
4 etc; so that the greater the N value, the greater its coverage.

All these criteria are generic regarding the PL life cycle, since they can be applied for both domain
engineering and application engineering. Accordingly, they apply to both feature models in general and their
configurations. Specifically in an experiment to validate this work, presented in the next section, the
proposed criteria were applied in application engineering, i.e. on feature model configurations.

ISBN: 978-972-8939-30-4 © 20010 IADIS

4. EXPERIMENTAL EVALUATION

An experimental evaluation was carried out to verify the feasibility of applying the proposed criteria and
perform a comparison among them. In brief, the experiment was composed by the application of the defined
testing criteria on a feature-based PL. The criteria were applied during the PL application engineering, i.e. the
test cases were selected according to the feature model configurations. In the following sections, the
environment, steps, artifacts, results and analysis of results of the experiment are presented.

4.1 Environment and Context of the Experiment

Ideally, this experiment should have been conducted in an environment composed of a real PL, necessarily
based on feature models, consisting of the PL architecture and its components, including a set of already
existing test cases — associated with features of the feature model. However, creating such a realistic
environment to conduct this experiment was considered impracticable to be used only as a proof of concept.
In addition, there were found no real PL ready to be used in the experiment, since the application of this
approach is justified only in very complex areas of the software industry.

Thus, this experiment was conducted on a fictional environment, with artificial PL and test cases. First, a
dummy feature model was developed, with features created semi-randomly; despite the randomness, the
feature model was structured following elements well defined, in order to represent an organized PL. After,
fictitious test cases were created and associated to the features, and some of them were defined as test cases
whose execution detects the presence of a defect in the software; all the three actions performed randomly.

4.2 Experiment Steps

The following steps were undertaken to conduct this experiment:

1) Establishment of the execution environment, as presented in Section 4.1, including: (a) elaboration
of the feature model; (b) elaboration of the test cases; (c) association of features to test cases; and, (d)
association of defects to test cases;

2) Derivation of the feature model configurations. Three configurations were generated, with different
sizes, so that more comparative data were produced: (a) small — about 40% of features selected; (b) medium
— about 50% of features selected; and, (c) large — about 70% of features selected;

3) Selection of the test cases for each configuration, using — for each one — all the testing criteria
proposed in Section 3. The critead-featur es-in-level-1-N was executed with m N=1, 2 and 3.

4.3 Produced Artifacts

The feature model was elaborated using the FeaturePlugin tool (Antkiewicz & Czarnecki, 2004). Some
model excerpts are presented in Figure 3. Several features are presented in their collapsed form. Three views,
(a), (b) and (c), are used to present different features expanded and hence different parts of the model.

The PL representation through the feature model was split in two parts: architecture and components. For
the PL architecture, eight architectural (components) parts were created. Regular components were classified
in three types: (i) mandatory — for which six components were created; (ii) optional — for which five
components were created; and, (iii) alternative — for which two component groups were created, one with
three alternative components and another one with two alternative components.

For each PL component, a set of features was created to represent the functionalities that compose it.
Regardless of these components are mandatory, or optional/alternative, their associated features can be either
mandatory or optional/alternatives. Thus, an optional component, for example, may have a mandatory feature
associated to it. The total number of features for this feature model, by feature type, is presented in Table 1.

1821 test cases were created and associated to the 350 features, at a rate of 5.2 test cases per feature. 300
defects were associated to 550 of the 1821 test cases; in a way that one defect could have its presence
detected by the execution of two or more test cases, although most of the defects were associated with only
one test case. Table 2 presents the number of defects associated to the features of the three configurations.

= 54 Product Family

- System E-dh System El-d System
- # Architecture ® Architecturs :
(= # Architecture Part 1 - ® Componsnts "
8 feature 1 - ® Mandatary Components
B # feature 2 SR TS
B A <24 ™ Mardstory Component 1 LA
b B Feature 21 [+ ™ Mandatary Companent 2
B @ feature 22 [™ Mandatory Component 3
LOEeA - ™ Mandatory Component
: -8 Feature 221 - ® Featurs 1
i feature 222 | Ee o feature 11
@ festure 223 B & feature 111
| featurs 23 : L Feature 11l -
B @ feature 24 - # feature 2
i # feature 241 - # feature 21
@ feature 242 A
o # Feature 243 E-- @ feabure 211
B & feature 3 | B # feature 2111
G- # architscturs Part 2 o @ feature 21111
- & prchibecture Part 3 ;| feature 212
- # Architecture Part 4 El- 8 feature 213
- # Architecture Part 5 SRS
G- # architscturs Part B feature 2131
- @ archibecture Part 7 O feature 2132
B # Architecture Part 8 - ™ Mandatory Component §
[E- ® Components [H- ™ Mandatory Cormponent & =
#® Mandatory Components (- © Optional Components
B ® Optional Components - © Alternative Components

IADIS International Conference Applied Computing 2010

= &% Product Family

= &% Product Family

- @ Architecture

=l # Components

il ® Mandatory Components
[+ © Optional Components

<055
#- o
o
o
a
o

Optional Component 1
Optional Campansnt 2
Optional Compaonent 3
Optional Component 4
Optional Camponent 5

Ié| © Alternative Components

© alernative Group 1
E-A <01
O Alternative Component 1-1
Bl & Alternative Component 1-2
. # feature 1
. E® featursz
A a0z
-8 feature 21
‘ i@ feature 22
O Festure3
| B Feature 4
I Lo @ feature 41
O Alternative Component 1-3
© Alternative Group 2
A <01
B B Alternative Component 2-1

O Alternative Component 2-2

¥ & Alternative Components

Figure 3. Excerpt of the feature model used in the experiment

Table 1. Number of features used in the experiment

Feature model configurations

Feature type Feature model

Small Medium Large
Mandatory 138 79 104 115
Optative (Optional + Alternative) 212 58 78 60
Total 350 136 180 247

Table 2. Number of defects whose presence was detectable by the test cases

Feature model configurations

Defect types Small Medium Large
Unique defects 159 196 242
Total defects 200 283 371

4.4 Achieved Results

This section presents the data obtained by applying the testing criteria in the selection of test cases for testing
the products generated from the PL of this experiment. Tables 3 and 4 present data for the five criteria by
“feature type”. First, in Table 3, the numbers of required elements are presented. For each criterion and
configuration, the following data are presented: the absolute nhumber of required features and the percentage
over the total number of existing features in the respective configuration. For example, the feature model
configuration 2 (medium) had, as a total, 180 features; for the critelti@ptative-features, there were 78
features of this type that should be exercised, which represent 43% of the total value (i.e. of the 180 features).

Table 4 presents the numbers of defects whose presence was detected, according to the random
association between test cases and defects performed in the step 1. Two numbers are presented: unique
defects — in which different test cases that detect the presence of a same defect are counted only once; and,
total defects — in which all the defects whose presence were detected are counted regardless being repeated or
not. The maximum numbers of defects (unique and total) whose presence could be detected are presented for
comparison. For example, for the configuration 2, a maximum of 196 (unique) and 283 (total) defects could
have had their presence detected during test execution; for the créiériphative-features, 26 e 27 defects
(unique and total, respectively) had their presence detected, 13% and 10% of the maximum possible.

Tables 5 and 6 present similar data for the “tree level” criteria. Table 5 presents data regarding the
required elements, in which N=3 refers to the maximum level and, therefore, to the total number of features.
Table 6 presents data regarding the defects detected by the test cases selected by each criterion.

ISBN: 978-972-8939-30-4 © 20010 IADIS

Table 3. Number of required elements (specific feature types) for each test criterion “by feature type”

Configuration 1~ Configuration 2~ Configuration 3 Average
all-features # 136 180 247 188
% 100% 100% 100% 100%
all-mandatory- # 79 104 115 99
features % 58% 58% 47% 53%
all-optative-features # 58 /8 117 84
% 43% 43% 47% 45%
all-grouped-features- # 28 38 60 42
in-level-1 % 21% 21% 24% 22%
all-leaf-features # 8l 99 151 110
% 60% 55% 61% 59%
Average # 76 100 138 105
% 56% 55% 56% 56%
Table 4. Number of defects — test criteria “by feature type”
Configuration 1 Configuration 2 Configuration 3 Average
Unique Total Unique Total Uniqgue Total Unique Total
Maximum defects 159 200 196 283 242 371 199 285
all-features # 36 37 48 52 69 82 51 57
% 23% 19% 24% 18% 29% 22% 26% 20%
all-mandatory- # 23 24 26 28 31 34 27 29
features % 14% 12% 13% 10% 19% 9% 13% 10%
all-optative-features # 1 17 26 29 ¥ 39 21 28
% 11% 9% 13% 10% 15% 11% 13% 10%
all-grouped- # 13 13 16 16 27 28 19 19
features-in-level-1 % 8% 7% 8% 6% 11% 8% 9% 7%
all-leaf-features # 19 20 24 29 26 28 23 26
% 12% 10% 12% 10% 11% 8% 12% 9%
Average # 22 22 28 30 38 42 29 32
% 14% 11% 14% 11% 16% 11% 15% 11%

Table 5. Number of required elements (specific feature types) for each test criterion “by tree level”

Configuration 1~ Configuration 2 Configuration 3 Average
Total features 136 180 247 188
all-features-in-level-1-1 # 9 50 59 51
% 33% 28% 24% 27%
all-features-in-level-1-2 th 110 107 141 119
% 81% 59% 57% 64%
all-features-in-level-1-3 # 124 150 192 155
% 91% 83% 78% 83%
Average # 93 102 131 109
% 68% 57% 53% 58%
Table 6. Number of defects — test criteria “by tree level”
Configuration 1 Configuration 2 Configuration 3 Average
Unique Total Unique Total Unique Total Unique Total
Maximum defects 159 200 196 283 242 371 199 285
all-features-in-level-1-1 # 10 10 13 13 19 21 14 15
% 6% 5% 7% 5% 8% 6% 7% 5%
all-features-in-level-1-2 # 24 21 20 21 43 44 29 31
% 15% 14% 10% 7% 18% 12% 15% 11%
all-features-in-level-1-3 # 31 39 39 45 59 61 45 48
% 23% 20% 20% 16% 24% 16% 23% 17%
Average # 24 25 24 6 40 42 29 31
% 15% 13% 12% 9% 17% 11% 15% 11%

IADIS International Conference Applied Computing 2010

4.5 Results Analysis

The results presented in Section 4.4 showed that different testing criteria present different coverage levels:
through Tables 3 and 5, it is possible to verify that the number of required elements by each criterion is
different among them. The same applies to de number of defects with presence detected (Tables 4 and 6).

Regarding the required elements for the criteria by feature type (Tab#l-Batures presented the
greatest number of elements to be exercised, since it requires all the existing feditunasdatory-
features, all-optative-features and all-leaf-features had a number of required elements about to 50%,
ranging between 40% and 60%; depending on the model configuration, they alternated between a lowest and
a highest number. Andll-grouped-features-in-level-1 presented the lowest number of required elements.

For the criteria by tree level (Table 5), the results were achieved in accordance with what might be expected:
they naturally lead to the criterion in leMgt3 to have more required elements tiNe2 which in turn has

more required elements thatx1. A similar analysis was performed regarding the number of defects whose
presence was detected by each criterion (Tables 4 and 6). In this case, it was expected that the greater the
number of required elements for a particular criterion, the greater would be the number of defects found.

Analyzing the criteria and creating a rating according to the average values presented by the three
configurations, the data of Table 7 were obtained. Both ratings follow the same pattern, with minor changes
in order. A gap in coverage between the criteria was observed: the most stringent criterion (100%) required
nearly five times more features than the least stringent one (22%); whereas the most efficient criterion (26%)
detected the presence of almost four times more defects than the least efficient one (7%).

This criteria rating analysis could have been done also by mathematical studies, not only experiments.
Unfortunately, this does not seem possible for the feature modeling case, since by its formation rule, all
features in a model may be exclusively either mandatory or optional ones, for example; or else all features
could be located in level N=2 excepted by one feature in level N=1. Although possible, these special usages
of feature models are not common in practice, since there are no real-world situations representable by them.

Table 7. Criteria rating regarding coverage of required elements and percentage of defects found

Coverage of required elements Percentage of defects found

Position Criterion Coverage Position Criterion % of defects
1 all-features 100% 1 all-features 26%

2 all-features-in-level-1-3 83% 2 all-features-in-level-1-3 23%

3 all-features-in-level-1-2 64% 3 all-features-in-level-1-2 15%

4 all-leaf-features 59% 4 all-mandatory-features 13%

5 all-mandatory-features 53% 5 all-optative-features 13%

6 all-optative-features 45% 6 all-leaf-features 12%

7 all-features-in-level-1-1 27% 7 all-grouped-features-in-level-1 9%

8 all-grouped-features-in-level-1 ~ 22% 8 all-features-in-level-1-1 7%

5. RELATED WORK

There is a debate about the best strategy for software testing in PL (McGregor, 2007). Four main strategies
can be currently found in literature (Tevanlinna, et al., 2004): (i) the individual and independent test of each
product generated by the application engineering; (ii) the incremental testing of the PL; (iii) the instantiation
of reusable tests; and, (iv) the division of responsibilities.
ScenTED $Scenario-based TEst case Deriva)ias an example of technique used to instantiate reusable
test cases (Metzger, 2006). It supports the creation of domain testing models (as extended UML activity
diagrams) by extending use cases models in the requirements level, and the derivation of domain test cases
from these models. As a result, the domain test cases are used to derive test cases for a specific application.
According to White, et al., (2008), since feature models are widely used to describe variabilities in PL,
they can be used to improve testing in PL, as exploited in the paper. A variation of this idea was presented by
Olimpiew and Gomaa (2008), which uses a combination of UML diagrams and feature models: test cases are
created based on use cases and activity diagrams; and, through feature models, each feature is associated with
one or more test cases. Thus, when a feature is selected, its respective test cases are selected as well.

ISBN: 978-972-8939-30-4 © 20010 IADIS

6. CONCLUSION

The search for increasing efficiency in software engineering has led the industry to apply approaches related
to software reuse. Typically, these approaches are associated only to the first phases of software development
— such as analysis, design and implementation. LP is one of these approaches, which aims at systematizing
the development of similar software products. Although software testing is an activity whose supporting
techniques are usually based on models, few studies have reported testing associated to feature modeling.
Feature modeling technique, one of the forms used to represent variabilities and commonalities in product
families of PL, has a great potential to provide support in the testing activity. This paper helps to demonstrate
this potential, by presenting an experiment in which some proposed testing criteria were used and compared.

The experiment showed the criteria feasibility for use in practice. Moreover, it showed that the criteria
have different demanding levels in terms of required elements and consequently in terms of efficiency or,
inversely proportional, in terms of resources needed. Thus, test analysts who work with PL based on feature
models can have a range of testing selection and coverage criteria. These criteria may be used at different
times depending on the objectives and available resources. The experimental results presented were obtained
based on an artificial environment. Ideally, a real PL environment, for example for BPM domain, should
have been used, so that there was a greater reliability on the reached conclusions. This is a major concern of
future research. Another interest for future is the development of a supporting tool for software testing based
on the criteria proposed here, both for the selection of test cases and for the coverage analysis.

ACKNOWLEDGEMENT

This work was supported by The State of Sdo Paulo Research Foundation (FAPESP), Brazil.

REFERENCES

Antkiewicz, M. and Czarnecki, K., 2004. FeaturePlugin: Feature Modeling Plug-in for Edipseeedings of eTX
workshop Vancouver, Canada, pp. 67-72.

Clements, P. and Northrop, L., 200%oftware Product Lines: Practices and Patter@El Series in Software
Engineering, Addison-Wesley, New York, USA.

Czarnecki, K. et al, 2005. Staged Configuration Through Specialization and Multi-level Configuration of Feature Models.
In Software Process: Improvement and Pragti¢el. 10, No. 2, pp. 143-169.

Czarnecki, K. and Antkiewicz, M., 2005. Mapping Features to Models: A Template Approach Based on Superimposed
Variants. Proceedings of 4th International Conference on Generative Programming and Compoigamtering
Tallinn, Estonia, pp. 422-437.

Fantinato, M. et al, 2010. Product Line in the Business Process Management Dom&irC. Kang, V. Sugumaran, S.
Park (Eds.), Applied Software Product Line Engineeritwgerbach Publications, Boca Raton-FL, USA, pp. 497-530.

Kang, K. et al, 1990Feature-Oriented Domain Analysis (FODA) Feasibility Stutlgchnical Report CMU/SEI-90-TR-
021, SEI/CMU, USA.

Linden, F. J. et al, 200Boftware Product Lines in Action: The Best Industrial Practice in Product Line Engineering
Springer, Berlin, Germany.

McGregor, J. D., 2008. Toward a Fault Model for Software Product LRregeedings of 5th Software Product Lines
Testing WorkshagLimerick, Ireland, pp. 157-162.

Metzger, A., 2006. Model-based Testing of Software Product LiPexeedings of 7th International Conference on
Software TestingDuesseldorf, Germany.

Myers, G., 1979The Art of Software Testingohn Wiley & Sons, Hoboken, New Jersey, USA.
Tevanlinna, A. et al, 2004. Product Family Testing: A Suri@ACM SIGSOFT Soft. Eng.,N/ol. 29, No. 2, pp. 12-12.
Pressman, R., 2008oftware EngineeringA Practitioner's ApproachMc-Graw Hill, New York, USA.

SEI — Software Engineering Institute, 200K. Framework for Software Product Line Practice - Version, 4.2
http://www.sei.cmu.edu/productlines/framework.html.

White, J. et al, 2008. Automated Diagnosis of Product-line Configuration Errors in Feature Nodetedings of 12th
International Software Product Line Conferentamerick, Ireland, pp. 225-234.

10

IADIS International Conference Applied Computing 2010

A NOVEL METHODOLOGY TO FORMALIZE THE
REQUIREMENTS ENGINEERING PROCESS WITH THE
USE OF NATURAL LANGUAGE

Marinos G. Georgiades* and Andreas S. Andreou**
*University of Cyprus
Department of Computer Science, P.O.Box 20537, 1678 Nicosia, Cyprus
**Cyprus University of Technology
Department of Electr. Engineering and Information Technology, P.O.Box 50329, 3603 Limassol, Cyprus

ABSTRACT

The lack of a formal approach with high expressiveness close to that of natural language drives systems analysts to use
their own informal ways to engineer requirements. This paper describes a novel methodology that attempts to formalize a
large part of the Requirements Engineering (RE) process, including Discovery, Analysis and Specification of
requirements. The formalization is achieved by utilizing elements of natural language syntax and semantics, with the
focus being on keeping ambiguities low and expressiveness high. In particular, Requirements Engineering is converted to
a series of predefined steps, through which the analyst is guided in advance what specific types of data and functions to
use, how to form and document them, and, more importantly, what (predefined) questions to ask the stakeholders in order
to correctly elicit their needs. The proposed methodology can take an object-oriented or a functional direction. It is
supported by a software tool, which also offers automatic construction of diagrammatical representations.

KEYWORDS

Natural Language, Automated Requirements Engineering.

1. INTRODUCTION

Recent studies show that the least understood parts of systems’ development are the stages of requirements
discovery, analysis and specification (The Standish group, 2009). The problem observed is that there is an
enormous gap between the clients’ needs and the software engineers’ understanding of the clients’ needs
(Goldin, 1997). Clients often speak with vague sentences and/or cannot express their functional needs or,
even worse, they do not know what these needs really are. This problem is amplified further when the analyst
does not provide the right questions, as he/she essentially does not know precisely what to ask.

Our standpoint is that if you know what to write, then you know what to ask. Hence, if the analysts know,
in advance, specifically what types of functions, data and constraints (Requirements Analysis - RA) they
should search for and write down, then they will be able to ask specific questions (Requirements Discovery -
RD) regarding that particular information. A second priority of engineering the requirements is to formalise
the way the analysts write this information (Requirements Specification - RS) - that is, to organize it, apply
correct syntax, etc. Similarly, the way the RD questions are written is part of this (second) priority.
Conclusively, building the questions for RD, based on RA (mainly) and RS is a reliable way to derive the
right answers/requirements from the users.

Such an approach or methodology that provides specific steps in advance and, more importantly, a
formalized and understandable way to engineer requirements does not currently exist. This paper proposes
the NLSSRE (Natural Language Syntax and Semantics RE) methodology, based on prior work by
Georgiades et al. (2005), that utilizes elements of natural language (NL), such as verbs, nouns, genitive case,
adjectives, and adverbs, to formalize the stages of RD, RA and RS. The main concept of the methodology is
that it can formalize the RE process by providing specific types of functions and data, as well as patterns of
formalized sentences, for the RA and RS stages, based on which specific pre-determined questions are
created to be used in the RA stage. Our decision to adopt NL is based on three significant expectations for

11

ISBN: 978-972-8939-30-4 © 20010 IADIS

12

this endeavour: (i) to identify and define adequately the various types of data and functions of an information
system (IS), as well as their relations, because language, by its nature, is the most powerful medium of
expression; (ii) to provide a common terminology and eliminate redundancies in specifying names of
functions, data and constraints; and (iii) to give requirements a NL-like description which is very
understandable and useful as a communication medium between users, analysts, and programmers of the IS.

This paper is structured as follows: Section 2 reviews the existing literature on the use of NL in RE.
Section 3 discusses in detail the underpinning of the methodology, as well as each of its steps with some
illustrative examples. Section 4 provides some conclusions and recommendations for future work.

2. LITERATURE REVIEW

The NLSSRE methodology covers the stages of RA, RD and RS. Its key-point is that the RA (mainly) and
RS use predefined types and templates of functions and data, and they guide the process of building the
question-sets for the RD stage; and the answers to these questions complete RA and RS by giving values to
the relevant types and templates. In this section, we examine other approaches of NL in RE separately for
each stage of RE, attempting to provide some sort of comparison with our methodology.

The approach that dominates the literature of RD with the use of NL is the retrieval of requirements from
already written requirements documents, by using rule-based (Goldin and Berry, 1997; Rolland and Proix
1992; Li et al., 2005) or probabilistic techniques (Rayson et al, 1999). There are also a few approaches
(Tjong et al., 2006; Videira and da Silva, 2005) which suggest that users should write a paragraph describing
their job tasks in free text on which they also apply similar retrieval rules to elicit the requirements. However,
the retrieval approach is not particularly reliable, since requirements are often not written syntactically,
grammatically and semantically correctly from scratch, and the rules applied to retrieve them cannot work
well to produce reliable and complete results; additionally, there is a good possibility that the original texts
do not cover all the requirements of the IS under development and also include redundancies and
disorganized material. In contrast, our approach differs from the aforementioned ones, since it provides
specific (predefined) sets of questions, which we derive from the formalization of functions and data. The
answers to these questions finalize the analysis and specification stages. Hence, the way we try to elicit
requirements is clearly connected to the analysis and specification of requirements. In the current literature,
this link does not exist, and this is exactly why the resulting requirements documents need to be re-organized,
re-validated and re-adjusted.

In the requirements analysis stage, issues such as identification, classification and decomposition of
requirements need to be dealt with. Videira and da Silva (2005) and Rolland and Proix (1992) mention only
types of actions based on the verbal types, but they do not expand on them or match them with IS elements.
Our approach differs from the aforementioned studies and expands on the use of language semantics to
identify, classify, group and decompose IS functions and data (for example, we use genitive case types to
define different types of data), to define constraints and non-functional requirements.

Regarding requirements specification, which deals with the construction of the requirements syntax, some
approaches (e.g. Conger’s, 1994) use a basic syntax (<Subject> <Verb> <Object>), and others use an
additional element (<Subject> <Verb> <Object> <Complement>) such as in Rolland and Proix [5].
However, these approaches do not provide specialisations of this basic syntactic form according to the type
of the verb (Create, Alter, Erase, etc.) and in turn they cannot group such specialised requirements under one
comprehensive function or an object. This is provided in our approach, where we also map the different
syntactic forms to either a functional or an object-oriented specification to produce a complete requirements
specification document.

3. THE METHODOLOGY

The goal of the methodology is the formalization of the major activities of RE including Requirements
Discovery, Analysis and Specification, so that the analyst will know in advance, through a step-by-step
approach, what questions to ask, in what specific way to analyse the answers to the questions, and how to
write them in a specific way. The application domain of the methodology is an IS (e.g. Hospital IS or

IADIS International Conference Applied Computing 2010

Bookstore IS) that deals mainly with management of documents or other physical objects that can be
conceived as electronic information which can be Created, Altered, Read and Erased.

3.1 Fundamentals

The formalization of the methodology is based on two elements: Firstly, on the way the methodology is built,
and secondly on Natural Language. For the former, we followed our standpoint, as already mentioned in the
introduction, that if you know what to write, then you know what to ask. Hence, if we know what functions
and data we look for (this is part of RA), then we will know what questions to create (activity of RD), which,
in turn, will give specific answers about the said data and functions. As a result, in our methodology, first we
use predefined types of functions and data, and based on these we derive the questions for RD. The second
element that facilitates formalisation is the use of Natural Language. NL gives expressiveness to the
formalization of requirements and makes them easily understood by the users, analysts and programmers. In
particular, we use several linguistic elements from semantics and syntax of natural language. In our approach,
for the RA stage, data are derived from the semantic types of genitive case, other grammatical cases, nouns,
adjectives, adverbial complements, and stable and temporary object properties;* functions are derived from
the semantic types of verbs; finally, constraints are derived from relations between data and between data and
functions. For the RS stage, functions, data and constraints can be written in the form of formalized
sentences, by using the right order of different syntactic parts, such as subject, direct object, indirect object,
etc., and grouped based on either a functional approach (figure 3a) or an object-oriented approach (figure 3b).
We also use the above and other linguistic elements to provide a common terminology for documenting data,
functions and constraints. The advantage is twofold: first there will be a consistent and common language of
writing, without ambiguities and redundancies, and, second, this controlled language may be computer-
processed and translated automatically into semi-formal notations, such as diagrams (UML class diagrams,
use case diagrams and specifications, and DFDs), or formal notations, such as Z specifications.

3.1.1 Information Object

Our world consists of either tangible objects (concrete - which we can feel by using our 5 senses, e.g. book,
chocolate) or intangible objects (abstract - e.g. disease). In this work an Information Object (10) denotes a
separate entity of information (attributes) that can stand on its own in the IS. The 10 can be created, altered,
read and erased within the context of the IS. For example, a car tyre is an 10 since it can be separated from a
car and, for example, be used in another car, or a Doctor is an 10, since it is a separate entity consisting of a
set of attributes, such as height, weight, specialty, etc., while a cup handle is not separable from the cup
(when in that case it will have no use), and may not be considered an 10°.

In the NLSSRE methodology, for each 10, five (5) patterns of formalized sentential requirements (FSRS)
are provided, as shown in the example of fig. 2(a) and in section 3.1.3. Each FSR pattern includes the
following elements: (a) a CAREN function (Create, Alter, Read, Erase, Notify) which is applied on each 10
and also denotes the type of the FSR; (b) non-functional requirements (Instrument, Amount, Time, Location
— not elaborated in this paper, due to space limitation) with direct relation to each CAREN function; (c) Roles
(e.g. Creator, Accompaniment) that are related to each CAREN function and are also attributes of the 10; and
(d) constraints, an example of which is given in section 3.1.3 (not elaborated in this paper, due to space
limitation). Hence, the FSRs facilitate the formalization of functions, data attributes, non-functional
requirements and constraints of the 10. For the formalization of additional types of attributes of each 10, the
NLSSRE methodology makes use of the genitive case, the adjective and other types of attributes. In section
3.1.2 we illustrate the use of the genitive case for the formalization of some types of attributes. In section
3.1.3, we illustrate the use of FSRs to formalize the rest of the aforementioned elements. Additionally, we
will show how the functions and data of the system are grouped in relation to the 10, leading either to a
functional or an object-oriented specification.

The issue of identifying the 10s - requires the involvement of users and stakeholders - is critical in
Requirements Analysis and has not been examined extensively in the relevant literature. It is also the first
step of our methodology (section 3.2). The identification of 10s will help us organize the data (IOs and

! In this paper, we focus on the use of genitive case — the use of adjectives, which helps derive sub-types of data and functions as well as
defining constraints, and the use of adverbial complements for defining constraints will be part of future work.
2 There are some cases where inseparable parts can be 10s, but expansion on this topic is out of the scope of this paper.

13

ISBN: 978-972-8939-30-4 © 20010 IADIS

14

attributes) of the IS and their relationships. However, this issue will not be explored in the current paper, due
to space limitations, and will be left for future work.

3.1.2 Formalization of Data Attributes of the 10

We distinguish three types of 10 attributes: The Primitive attributes, which are related to the 10 per se and
usually refer to its physical characteristics (e.g., for the Patient 10, primitive attributes include temperature,
height, mass), the Peripheral attributes that refer to other 10s related to the 10 under study (e.g., for Patient,
peripheral attributes include Doctor, Disease), and the Document attributes (e.qg. title, fonts, etc.), since each
10 can be treated in the form of a document (electronic or paper).

As mentioned in 3.1.1 the 10 attributes are determined by the FSR roles, the genitive case, the adjectives,
permanent and temporary object properties, and other types of attributes. Here, due to space limitations, we
describe only the use of genitive case. The genitive case is the linguistic case that provides relationships
between nouns. In this paper, we utilize the relationship types that denote origin, and purpose/use (others
include genitive of possession, material, composition, content, and magnitude) to give an indication of the
use of genitive case for identifying types of data.

Attributes from Genitive of Origin: The genitive of origin expresses the source, person or place from
which something originates. In IS, the genitive of origin corresponds to the Creator(s) of the 10, and so the
10 will include Creator(s) as attribute(s). For example, let us assume that the Translation 10 is created by 3
entities: the Translation Coordinator, the Proofreader and the Translator. Hence, these 3 entities will be
attributes of the Translation 10 (they could also be new 10s that will also be analysed for their attributes and
functions separately). The Creator can also have an Accompaniment who helps him/her during the creation
of the 10 (e.g. Translator is the Creator and the other two are Accompaniments). Additionally, a Creator has
responsibility for the creation of the 10, and hence Creator’s Signature could be another derived attribute.

Attributes from Genitive of Purpose: It indicates the purpose for which something is used. In particular,
the genitive substantive denotes the purpose or intended recipient of the head noun. In an IS, the genitive of
purpose corresponds to two attributes of the 10, the Intended recipient who will use the 10 according to its
intended use (in this context using it means changing it or evaluating it, but not just transferring it which has
no effect on the object) and the Purpose/ Use of the 10 which is the intended use for which it is created.

In summary, according to some indicative types of the genitive case, an 10 can have the following
attributes: Creator, Signature, Accompaniment, Intended Recipient, Purpose/Use, Owner and Physical
attributes such as height, weight, and body parts.

3.1.3 FSRs for the Formalization of Functions, 10 Attributes, Non-Functional Requirements
and Constraints

Figure 1 below shows CAREN, the set of functions and sub-functions we recommend, which are applied on
the 10. The formalization of functions is based on “key” types of verbs in natural language grammar that are
related to electronic information — taking also into account the relevant RE literature — and can be considered
as functions of an IS. Creation, Alteration, Reading, and Erasure are applied on an Information Object (10),
Notification is applied (triggered) after the Creation, Alteration, or Erasure of an 10, while Addition,
Removal and Comparison are lower level functions that are applied on the properties/attributes of each 10.
Reading can be also part of Creation, Alteration and Erasure as will be explained later below.

Create 10 l Erase I0
Alter 10
-Read “Read > R;ﬂﬂ IOT p|-Read
-Compare -Compare - Presen -Compare
-Add _Remove - Act
T _Add - Remove
H 7
' Notify !
kccccccccca= _’. ~ 4 -4

Figure 1. CAREN - A recommended set of functions and sub-functions applied on the 10, and the notifications produced.

Every CAREN function is part of the Formalized Sentential Requirement (FSR) which also includes the
relevant 10, roles and non-functional requirements of the IS. The syntax of the FSR helps us organize all
these related parts in one sentence. Below we provide the syntax of each FSR pattern, which varies according

IADIS International Conference Applied Computing 2010

to each CAREN function, and it is based on the general form <Subject><Verb> <Object><Adverbial
Complement>. Additionally, figures 2(a,d) provide examples of the FSRs syntax from a real case.

Create: Creation is the most significant function, since during Creation the attributes of the 10 take their
initial values which are the basis for further processing by the remaining functions. Creation FSR has the
following syntax: <Creator,Accompaniment><Create><I0><Adverbial Complement>::

<System><Notifies><Creator,Accompaniment><Intended Recipient,Notifiee><Adverbial Complement>

where Creator is the entity that creates the 10, Accompaniment is the entity that assists the Creator in the
creation of the 10, Intended Recipient is the entity for which the 10 is created and which will utilize the 10
within the IS, and Notifiee is the entity that needs to be notified of the creation of the 10 (this entity will not
use the 10 in any way that will cause any interaction within the system). On the right of the symbol “::” the
syntax of the Notification function follows, which is triggered after the execution of the function on the left.
Adverbial complements denote non-functional requirements with the types of Instrument, Time, Quantity,
and Place. As depicted in figure 2(d), for the Prescription 10, the Creation FSR is written as follows:

<Doctor,Nurse><Create><Prescription><Stylus;11:00a.m.;10minutes;Doctor’soffice)::
<System><Notifies><Doctor,Nurse,Pharmacist,Patient>

Creation, similarly to the other CAREN functions, is decomposed to the sub-functions of Reading,
Comparison and Addition. Reading is the sub-function that will present the attributes of the 10 to the Creator,
Comparison will check if the value to be assigned to an 10 attribute satisfies the constraints about that
attribute, and Addition will add the approved values.

Alter: During Alteration, the value of one or more of the attributes of the 10 changes. The Alteration FSR
has the following syntax: <Alterator,Accompaniment><Alter><10><Adverbial Complement>::

<System><Notifies><Alterator,Creator,Accompaniment><Intended Recipient,Notifiee>

where Alterator is the entity that alters the 10.

Read: The meaning of this function can be conceived in two ways: the first, which is the one that
concerns Requirements Analysis, is about what the user wants to read from the data of a particular 10; some
of the data need to be provided to the user and some other may not. The second concept for ‘Read’ concerns
the way this data will be presented, including drawings, graphics, video, multimedia, etc; a part of this
concept (the general one) falls in RS, but the detailed procedures of implementing such methods of
presentation concerns the Design which is outside of the scope of RE. Reading is also embedded and occurs
as a first sub-function of the functions of Creation, Alteration and Erasure. Reading has the following syntax:

<Experiencer><Reads><I0><Adverbial Complement>

where Experiencer is the entity that experiences the 10 through viewing it, listening to it, etc.

Erase:® Erasure of the 10 means that the Information Object is permanently deleted. All of its
information, including properties and functions, is deleted. Erasure has the following syntax:

<Alterator><Erase><I0>:: <System><Notifies><Alterator,Creator,Notifiee>

Notify: At the user’s level, assuming a manual, paper-based IS, we meet the function of Transmission
(from the linguistic verb of Transfer of Possession), where data is sent from one entity to another; for
example, the Doctor gives the Prescription to the Patient, and the Patient gives the Prescription to the
Pharmacist. In a computerised IS the Transmission of Prescription is replaced by the Read function, since the
10 (prescription, in this case) is already stored (after creation or alteration) in the IS. Hence, the Pharmacist
can Read the Prescription by simply retrieving it from the database. However, in a computerized IS,
transmission exists at the messaging level, and we name it Notification. In particular, when an 1O is created
or altered, then a notification should be sent to the interested parties (including Intended Recipients).

3.1.4 Predefined Question Sets — Elicitation

Most, if not all, of the approaches that use formalism in NL RE try to develop and formalize requirements
that are already written in existing documents. We consider this approach not efficient, since requirements in
such documents are often poorly written and organized; sentences do not necessarily follow the correct form
of syntax, while there may exist redundant words, fuzzy and complicated meanings, etc. As such, it is rather
precarious and difficult to apply linguistic rules on such documents.

Based on the syntax of each FSR (as in the example of fig. 2a), relevant predetermined questions are
created (fig. 2b) that guide stakeholders to provide specific answers without ambiguities, vagueness and

® Since there are interdependent entities, the user must be informed that by erasing an object another object may be affected. Therefore,
appropriate constraints should be defined along with relevant questions for the user.

15

ISBN: 978-972-8939-30-4 © 20010 IADIS

16

redundancies; these questions are submitted to the stakeholders (fig. 2c), and their answers are used to
complete the requirements (consisting of complete FSRs like in fig. 2d, 10 attributes, and grouping).
Subsequently, the complete formalised requirements are utilised, with the aid of specific rules, to build
ORDFDs, class diagrams and use case diagrams and specifications.

(2) Automatic creation of FSRs for each [0 (b) Questions
Prescription P Ip
<Creator, Accompaniment> <Creale> <Prescription® : <Systen <Notifiss> <Creator, Accompariment, Intended Recipisnt, Notifise= 1 Who creates the Preseription”
<hlterator, Accormpaniment™ <Aler> <Presenption® :: <System® <Notifies> <Alterator, Accompaniment, Intended Recipient, Notifiee> 2. Who accompanies the Creator?
<Erasor <Erase> <Prescription= - <System= <Notifies® <Erasor, Creator, Notifies> 3. Who is the Intended Recipient of the Prescription?
<Experiencer> <Read> <Prescription= S | Who else s notified for the creation of the Prescrption?
5. Who alters the Prescription?
Mariage Drag | 6. Wha accompanies the Alterator?

<Creatar, Accompaniment= <Create> <Drug= - <System= <Notifies= <Creator, Accompaniment, Intended Recipisnt, Notifiess= - Who is ofifie Eor the elfeation of the Prescription?
< > <, <] ! = <Notifies> < fie 3

Alterator, Accompaniment® <hlters <Diug> - <Syatem> <Notifies™ <Alterator, Accompaniment, Intended Recipient, Notifies 2. Who exases the Presciption?
=Erasor= <Erase= =Dmg= © =System= <Notifies= <Erasor, Creator, Notifiee= 9. Who is notified sboat the rasure of the Prescriptior?

<Experiencer> <Read> <Drug> 10, Who Resds the Preseription?
(c)} Answer Questions (d) FSRe
Prescription | Prescrip
1. Whao creates the Prescription? | Doctor 1. <Doctor, Hurse= <Create= <Prescription= = <System= <Notifles= <Doctor, Nurse, Phanmacist, Patient=
2. Who accompanies the Doctor? | Nurse 2. =Doctor= =ilter= <Prescription= :: =3ystem= <Hotifies= <Doctor, None, Pharmacist, Patient=
3. Who is the Interded Recipient of the Prescription? Pharmacist ——"=3. <Doctor> <Erase> <Prescription :: <Syster= <Hotifies> <Doctor, None, None=
4. Who else is notified in the creation of the Prescription? | Patlent 4. <Doctoy, Nurse, Pharmacist> <Read= <Prescription=

5. Who alters the Prescription? | Doctor

6. Who accorpandes the Doctoy in Alteration? | None

7. Who else is notified in the alteration of the Preseription? | Patient
2. Who erases the Prescription? |Doctor

9. Who is notified in the erasure of the Prescription? hone

10. Who Reads the Prescription? Pharmacist

Figure 2. The predefined questions (b) created automatically by the FSRs patterns (a), and the resulting FSRs (d) created
automatically by the answers of the users (c), for the Prescription 10 — screenshots are taken from our software tool that
implements and supports the proposed methodology.

3.2 Methodology Application Steps

The ultimate goal of the methodology is to be able to apply it in a real setting. The application steps of the
methodology are the following:

a. ldentify the Information Objects (10s) of the system. Within this step we use specific guiding rules (as
illustrated in section 3.1.1), to distinguish the 10s of the IS. For example, for a Hospital IS, some of the 10s
include Prescription, Pharmacy, Patient, and Doctor.

b. Identify attributes of each 10. Within this step we identify the types of attributes of each 10. For this,
NLSSRE provides predefined types of attributes derived from genitive case types, as explained in section
3.1.2, as well as other linguistic semantic roles. For example, the Prescription 10 will have a Creator, an
Accompaniment, an Intended Recipient, etc.

c. Develop FSRs patterns for each 10. For each 10, the five FSRs patterns are created, as shown in the
example of figure 2(a). In this example, non-functional requirements are omitted, as they are still under
development and integration with the current tool.

d. Create questions for each 10. For each 10, we derive questions from the elements of the FSRs patterns
(fig. 2b) and the pre-defined types of attributes (not depicted), in the example of the Prescription 10.

e. Collect the answers to the questions from the stakeholders and complete requirements. In this step, we
make the questions to the users (fig. 2c), and the answers to the questions feed the FSRs patterns and, hence,
create complete requirements, as shown in fig. 2(d) (e.g. Creator takes the value Doctor).

f. Group FSRs and 10 attributes, by following either an object oriented approach, under Information
Object, or a functional approach, under Information Object Management. Within this step, the FSRs and 10
attributes are grouped, and they can take a(n): (i) Functional orientation: The FSRs are documented and
described under one comprehensive function with the heading 10 Management, as depicted in figure 3(a); (ii)
Object orientation: The FSRs and 1O attributes are parts of/ embedded in a particular 10, as previously
illustrated in figure 3(b).

IADIS International Conference Applied Computing 2010

10 M t 10
Creation Function {} Attributes:
Alteration Function {} gzil;d;):
Reading Function {} Alter ()
Erasure {} gisi%

(a) (b)

Figure 3. The methodology can take: (a) functional orientation (b) object orientation

g. Create diagrams including Object Related Data Flow Diagrams (ORDFDs), Class Diagrams and Use
Case Diagrams and Specifications. Within this step the answers are transformed to diagrammatic notations,
with the use of specific rules®. Figure 4(a) below shows the 2" level ORDFD diagram for Manage
Prescription, while figure 4(b) shows the class diagram for the Prescription and Drug 10s.

T L] 35 Ll [3 Lol

Prescription Drug
Avtrbutes Attributes
Creator Crestor
Sigaature Signature
Accompaniment_Cr Accompaniment_Cr
Intended Recipient_Cx Intended Recipient_Cr
Notifice_C ARerator
Alerator Accompanizent_Al
Intended Recipient_AL Intended Recipsent_Al
Natifice_Al Motifies_Al
Exprricncer Experiencer
Doc_Matesia Comtsimer
Doc_Content = Costest
Dee_title: 1 7 Weight
Dee_foats \bkime
Dioe_fonts_size Doe_Coatest

Dee_title:

Methods Doe_fonts
Doe_fomts_size

Aber () Methods
Erase ()
Read () Create ()

Aber ()

Erase ()

Read ()

Figure 4. (a) Second Level ORDFD, (b) Class diagram

3.3 Validation and Evaluation

Requirements are considered complete when they cover functions, data, users, constraints and non-functional
requirements. Our approach uses all the appropriate elements of Natural Language to cover these elements.
What is further required is to elaborate in additional types of data, constraints and non-functional
requirements. We have applied our methodology in a real setting which concerns the development of a new
Hospital Information System, screenshot examples of which have been presented in this paper. The results
have been compared to those obtained by an expert analyst who performed the same process in the same
environment and have proven to be equally fast, but more accurate and exhibiting less ambiguities; at the
same time it required fewer iteration with stakeholders, with meetings with stakeholders being reduced to one
half compared to those conducted by the expert. More over, the resulted structured English text was easier to
comprehend and agree upon on the client site (the case-study was only an experiment for research purposes
and did not proceed to later stages of the Hospital IS development). Due to space limitation, we will omit
further details here and this comparative evaluation will be part of a future paper. Therefore, this small-scale
evaluation indicated that our methodology is efficient, reliable and provides a very strong element of
validation by its nature, since the (semi) NL form of requirements are understandable to the client who gives
the final approval on the requirements. To enhance understandability even more, we have also developed a
parser (to be presented in a future paper) that parses the existing NL requirements and creates a purely NL
Software Requirements Specification document.

* ORDFD indicative rule: The roles of Creator, Accompaniment, Alterator, Intended Recipient, Experiencer and Notifiee correspond to
actors of a traditional DFD and are represented by a circle.

17

ISBN: 978-972-8939-30-4 © 20010 IADIS

18

4. CONCLUSION

Research studies in the area of Requirements Engineering show that there is a problem in understanding,
identifying and specifying users’ needs for the development of an Information System. There is lack of a
methodology that provides specific steps and more importantly a formalized and understandable way to
engineer requirements.

This paper has presented a methodology that is intended to formalize the major activities of Requirements
Discovery, Analysis, and Specification, so that the analyst will know in advance, through a step-by-step
approach, what questions to ask, in what specific way to analyse the answers to the questions, and how to
write them in a specific way. The formalization is achieved with the use of natural language elements, such
as verbs, nouns, genitive case, adjectives and adverbs. The key-point of the NLSSRE methodology is that
Requirements Analysis and Requirements Specification use predefined types of functions and data, as well as
patterns of formalized sentences, and they guide the process of building the question-sets for the
Requirements Discovery stage; and the answers to these questions create complete requirements by feeding
the relevant types and patterns. The proposed methodology can take an object-oriented or a functional
direction. It is supported by a software tool, and with the use of specific rules, it offers automatic
transformation of the resulting NL formalized requirements into diagrammatical representations, such as
ORDFDs, UML class diagrams and use case diagrams, as well as use case specifications and the SRS
document.

Future research steps will involve (i) application of the methodology in more real-world cases to test it
further and prove its accuracy, (ii) utilization of more linguistic elements of the methodology, such as
adjectives and adverbs, to form sub-10s and sub-functions, which will be mainly used for the creation of
more detailed ORDFDs and Class diagrams, as well as for implementing constraints, (iii) identification and
formalisation of constraints based on the existing formalization of data and functions, (iv) identification of
10s from other objects and data, and (v) investigation of the potential of producing automatically Z
specifications from the different FSR types presented in this paper.

REFERENCES

Conger, S. 1994. The New Software Engineering, Wadsworth Publishing Company, Belmont, CA.

Fabbrini, F. et al, 2001. An Automatic Quality Evaluation for Natural Language Requirements. Seventh International
Workshop on Requirements Engineering: Foundation for Software Quality. Interlaken, Switzerland.

Georgiades et al., 2005. A Requirements Engineering Methodology Based On Natural Language Syntax and Semantics.
13th IEEE International Requirements Engineering Conference (RE'05). Paris, France, pp. 73-74

Goldin, L. and Berry, D., 1997. Abstfinder: A prototype natural language text abstraction finder for use in requirement
elicitation. In Automated Software Engineering, VVol.4, No. 4, pp. 375-412.

Guizzardi, G., 2007. Modal Aspects of Object Types and Part-Whole Relations and the de re/de dicto distinction. 19th
International Conference on Advanced Information Systems Engineering (CAISE’07). Trondheim, Lecture Notes in
Computer Science 4495, Springer-Verlag.

Li, M. et al, 2005. Weighted fuzzy interpolative reasoning method. In Proceedings of the fourth international conference
on machine learning and cybernetics. China, pp. 3104-3108.

Rayson, P. et al, 1999. Language Engineering for the Recovery of Legacy Documents. REVERE project report,
Lancaster University.

Rolland, C. and Proix. C., 1992. A Natural Language Approach for Requirements Engineering. In Advanced Information
Systems Engineering (P. Loucopoulos ed.), Springer-Verlag, 257-277.

The Standish group, 2009. The CHAOS report, Press release,
http://iwww1.standishgroup.com/newsroom/chaos_2009.php

Tjong, S. et al, 2006. Improving the Quality of Natural Language Requirements Specifications through Natural Language
Requirements Patterns. In Proceedings of the Sixth IEEE International Conference on Computer and Information
Technology, Seoul, Korea, pp. 199.

Videira, C., and da Silva, A., 2005. Patterns and metamodel for a natural-language-based requirements specification
language. In Proc. of the CaiSE’05 Forum. pp. 189-194, Porto.

IADIS International Conference Applied Computing 2010

FEATUREOUS: INFRASTRUCTURE FOR FEATURE-
CENTRIC ANALYSIS OF OBJECT-ORIENTED SOFTWARE

Andrzej Olszak and Bo Ngrregaard Jgrgensen
The Maersk Mc-Kinney Moller Ingtitute
University of Southern Denmark
Campusvej 55, 5230 Odense M, Denmark

ABSTRACT

The decentralized nature of collaborations between objects in object-oriented software makes it difficult to understand
how user-observable program features are implemented and how their implementations relate to each other. It is
worthwhile to improve this situation, since feature-centric program understanding and modification are essential during
software evolution and maintenance. In this paper, we present an infrastructure built on top of the NetBeans IDE called
Featureous that allows for rapid construction of tools for feature-centric analysis of object-oriented software. Our
infrastructure encompasses a lightweight feature location mechanism, a number of analytical views and an API allowing
for addition of third-party extensions. To form a common conceptual framework for future feature-centric extensions, we
propose to structure feature centric analysis along three dimensions: perspective, abstraction and granularity. We
demonstrate feasibility of our approach by conducting a case study of change adoption in JHotDraw SVG.

KEYWORDS

Features, feature-centric analysis

1. INTRODUCTION

Feature-centric analysis (Greevy, 2007) helps developers to perceive object-oriented software in terms of its
user-observable behavior (Turner et al, 1999). The need for feature-centric analysis is constantly encountered
during software evolution and maintenance, since users formulate their functional requirements, change
requests and error reports in terms of features (Turner et al, 1999)(Mehta and Heineman, 2002). The ability to
relate these descriptions to relevant fragments of object-oriented source code is a prerequisite to feature-wise
modification (Greevy et al, 2007), error correction (Cornelissen et al, 2009)(Réthlisberger et al, 2007),
change impact assessment (Ryder and Tip, 2001) and derivation of new features from the existing ones.

Relating features to their implementations is, however, a difficult task, since object-oriented programming
languages provide no means for representing features explicitly. In object-oriented programs, features are
implemented as inter-class collaborations crosscutting multiple classes as well as multiple architectural units
(Murphy et al, 2001). This physical tangling and scattering of features over several units of code makes their
implementations difficult to identify and understand (Turner et al, 1999)(Shaft and Vessey, 2006).

The complexity and size of feature-code mappings creates a need for a tool-supported analysis
approaches. The role of tools is to guide the analysis process in a systematic fashion. Secondly, tool support
is needed to automate repetitive and error-prone calculations, and thereby to ensure reproducibility and
scalability of analytical activities. Finally, we deem it necessary to integrate tools for feature-centric analysis
with contemporary software development environments, so that feature-centric analysis can be assimilated as
part of standard activities during software evolution and maintenance.

In this paper, we aim at providing a novel tool support for feature-centric analysis of object-oriented
programs. We do this by presenting our tool infrastructure for the NetBeans Java IDE (NetBeans IDE,
http://netbeans.org) called Featureous. The infrastructure provides a lightweight dynamic feature location
mechanism and an API to the basic building blocks for implementing feature-centric analytical views. In
order to impose a conceptual structuring on the possible views developed on top of our tool, we propose
three-dimensional categorization of feature-centric views. Thus, each view can be represented as a point on

19

ISBN: 978-972-8939-30-4 © 20010 IADIS

three-dimensional space of: perspectives, abstractions and granularity. Featureous is available as open-source
and can be obtained from our website (Featureoustitpl//ecosoc.sdu.dk/coe/Featureous). This allows for
immediate usage of the provided feature-centric views, building upon our infrastructure and replication of the
analytical procedures presented in this paper.

In order to demonstrate feasibility of Featureous, we have used the described infrastructure for
implementing a number of state-of-the-art feature-centric views. We show how these views can be applied in
practice to gain insights into unfamiliar codebase of a mid-sized program. For this purpose, we analyze a
subset of features of the JHotDraw project (JHotDraw framewktirk//jhotdraw.org).

The remainder of this paper is organized as follows. In Section 2, we present the state of the art on which
we base our approach. In Section 3, we give a high-level overview of our unified approach to feature-centric
analysis. Section 4 describes the design of Featureous. In Section 5, we discuss the elements of our approach
through their application in the JHotDraw case study. Finally, Section 6 concludes the paper.

2. STATE OF THE ART

Feature-centric analysis supports the understanding of object-oriented software by considering features as
first-class analysis entities (Greevy, 2007). One of the basic elements of feature-centric analysis is the bi-
directional traceability links between features and object-oriented source code. Tools that explicitly visualize
this correspondence were shown to simplify discovering classes implementing a given feature and features
implemented by a given class (Réthlisberger et al, 2007)(Kastner et al, 2008)(Robillard and Murphy, 2002).

By analyzing the established traceability links, it is possible to characterize features in terms of classes
and characterize classes in terms of program features (Greevy and Ducasse, 2005). These characterizations
can be used to investigate inter-feature relations in terms of implementation overlap. Furthermore, the static
characterization based on classes can be complemented by views based on usage of objects by executing
features (Salah and Mancoridis, 2004). This allows for examining run-time inter-feature dependencies.

The information contained in feature-code traceability links can be summarized by usage of software
metrics. The approaches described in (Brcina and Riebisch, 2008)(Wong et al, 2000) have recognized
applicability of the metrics traditionally associated with the separation of concerns to analyzing features. The
two metrics proposed in (Brcina and Riebisch, 2008) - scattering and tangling - assess quantitatively the
complexity of the relationships between features and computational units.

Finally yet importantly, feature location procedures are used by feature-centric analysis approaches for
identification of source code fragments that contribute to implementations of program features (Wilde and
Scully, 1995). The two major types of existing approaches based on static analysis (Chen and Rajlich, 2000),
and dynamic analysis (Wilde and Scully, 1995)(Eisenberg and De Volder, 2005)(Olszak and Jgrgensen, 2009)
differ with respect automation, accuracy, and repeatability. The location approach that we adopt in this paper
is a dynamic, semi-automated technique defined in (Olszak and Jgrgensen, 2009). Since it relies on tracing of
a program’s execution, it allows for resolving polymorphic invocations, detecting common usages of objects
among multiple executing features, and takes into account the effect of branch instructions on control flow.

Summing up, the existing approaches define a set of diverse methods for feature-centric analysis.
Nevertheless, there is no common conceptual and technical basis for integrating them and exploring their
mutual advantages. Moreover, for some of the mentioned approaches there remain questions about scalability
and availability of tools implementing them. This gap we aim to fill through our approach.

3. FEATURE-CENTRIC ANALYSIS OF LEGACY SOFTWARE

Feature-centric analysis is the process of analyzing programs by considering features as first-class analysis
entities. What distinguishes features from the other types of source code concerns is their inherent rooting in
the problem domain of programs. As the structure of object-oriented software rarely modularizes and
represents features explicitly, any change tasks related to program functionality are likely to crosscut multiple
units of source code and a modification to one features is likely to affect the correctness of another one that
also use the fragment of code being modified.

20

IADIS International Conference Applied Computing 2010

Feature-centric analysis can be thought of as a special instance of a more general prabbssn of
decomposition analysis. Programs can be decomposed according to various criteria and thus made to
modularize different dimensions of concerns in source code. However, most of the modern programming
language allow for modularizing only one dimension of concerns at a time, callddnth@nt dimension
(Tarr et al, 1999). The correspondence between the modules of the dominant decomposition of a program and
one of its alternative decompositions is in general of type many-to-many. This is due to the phenomena of
scattering, where a single module of the alternative decomposition is dislocated over a number of modules of
the dominant decomposition, amahgling, where multiple modules of the alternative decomposition are
interwoven in a single module of the dominant decomposition. This lack of isomorphic correspondence
between the dominant and the alternative decompositions determines changeability of programs, since
different kinds of changes require different units of change. If the required change unit is modularized in the
dominant decomposition, then the change can be performed in a localized manner. However, if the change
unit is scattered over multiple modules, each of them will have to be modified to implement the change. It
may also happen that change made to one of such under-represented concerns will result in an unforeseen
modification of another one due to their tangling in terms of the same computational unit.

The mentioned situations occur for object-oriented
legacy programs, if tried to be perceived in terms of
feature-oriented decomposition criteria. Example)

such a situation is shown in Figure 1. A K .

The correspondences between object-oriented
feature-oriented decompositions of software can

investigated from fourperspectives, based on the A
concrete needs of a programmer. For instance

programmer who is given a report about an error i

Computational unit perspectivek

'
'
'
'
'
'
'
»
»

aAnpadsiad suoneal ainyea

particular feature would be interested in inspecting B g

classes that implement this feature, hence she wq P

use the feature perspective. After the error is correg e v
the programmer could use the computatiorc. —

perspective to reason if her modifications will affect h Feature perspective

the correctness of any other features in the progr:

The feature relations perspective can be used Figure 1. Perspectives on feature-code traceability links
programmers to assess the overlap of implementati (based on (Greevy and Ducasse, 2005)).

of two features. In summary, the three perspectives are

defined as follows:

1. Computational unit perspective shows how computational units like packages and classes
participate in implementing features (Greevy and Ducasse, 2005).

2. Feature perspective focuses on how features are implemented. In particular, it describes features in
terms of their usage of a program’s computational units (Greevy and Ducasse, 2005).

3. Featurerelations perspective focuses on inter-feature relations that can be deduced from the feature-
code mapping (Greevy, 2007).

We reckon that one of the major benefits of separating the analytical concerns by means of multiple
perspectives, apart from imposing a structure on the analysis process, is reducing the complexity of analysis.
This is because having multiple perspectives on the many-to-many correspondence between features and
computational units allows us to avoid investigating this complex mapping directly. Instead, analysis is
conducted on a number of one-to-many mappings, which are considerably easier to understand.

Within our framework, the perspectives are one oftkinee dimensions used for categorizing feature-
centric analytical views. The other two dimensionsatustraction andgranularity, as visualized in Figure 2.

The purpose of providing stratified levels of abstraction is to focus the analysis process by limiting the
amount of information simultaneously presented to the analyst. Furthermore, stratified abstraction levels
allow the complexity of a program’s features to be investigated in an incremental fashion. We define three
levels of abstraction:

1. Characterization level shows high-level diagrams, which aggregate and summarize the overall
complexity of feature-code mappings.

2. Correlation level provides correlations between individual features and computational units.

3. Traceability level provides navigable traceability links between features and source code.

21

ISBN: 978-972-8939-30-4 © 20010 IADIS

Abstraction In order to support analysis of the correspondences between features
and different granularities of computational units in Java programs, we
envision supporting three levels of granularityPhckage granularity;

2. Class granularity; 3. Method granularity.

Using the presented three-dimensional conceptual framework is it
possible to characterize feature-centric analytical views in terms of three
coordinates. For instance, view {pa, @} could be a feature-class
_ characterization in form of a plot, whereas view,{@®, ¢} could
Perspective hrovide a correlation view of features and packages in a program in form
of a graph or a table. Further examples of possible views, which have
been implemented in Featureous are discussed in Section 5. Summing
up, the presented conceptual framework for feature-centric analysis
defines a common categorization scheme for future views implemented
on top of Featureous. Thus, it structures the approaches to feature-centric
analysis and allows for relating them to each other.

Granularity

Figure 2. Three-dimensional
conceptual framework.

4. DESIGNING FEATUREOUS

The infrastructure provided by Featureous is designed around two parts: feature location mechanism and an
API that exposes the trace data to feature-centric views. Featureous is implemented on top of the NetBeans
Rich-Client Platform (RCP) and tightly integrated with Java IDE capabilities of the platform. The usage of
the module system of NetBeans RCP allowed us to achieve extensibility of Featureous concerning adding
new views by third parties without the need for recompiling the infrastructure itself.

Feature-centric analysis operates on the traceability links between features and object-oriented source
code. For establishing this traceability, our approach relies on the feature location mechanism defined in
(Olszak and Jgrgensen, 2009). This approach requires anné¢atimg entry points in the source code of an
investigated program. Feature entry points are the methods through which the execution flow enters the
implementations of features. In case of GUI programs, in which features are triggered through GUI elements,
feature entry points will most often be thetionPerformed methods of event-handling anonymous classes.
Feature entry point annotations placed on method declarations have to be parameterized by the string-based
identifiers of their corresponding features. Based on the annotations inserted by a programmer in the code, it
is possible to locate implementations of features by tracing the execution of the program when a user is
interacting with it. To achieve this, the program is instrumented with a tracing agent that registers information
about the execution in the control context of feature entry points. The tracing process is transparent for the
program user and it does not introduce a significant performance and memory overhead, since it does not
register the information about the timing and order of captured
TraceModel events. Featureous integrates the feature location process with
—®| featurelD: String 0—‘ NetBeans IDE by providing a new execution button in the IDE,

parent

which transparently instruments the program before executing it.
The feature location process produces a set of feature traces

Type that contain a mapping between features and source code of the

;'aggggfsstmg program. The model that we use to represent a trace of a single

nvocation instances: Set<String> feature is shown in Figure 3. Feature trace models, being an input

the feature-centric analysis, contain the information about

caller ? packages, methods, constructors, classes, instances, and inter-

: method invocations that occurred at run-time in implementations

Execution of features. This data is then exposed through an API to feature-

signature: String centric views.

callee

featureEntryPoint: bool . .
oo bt The usage of the API and implementing of an example

executionCount: int feature-centric view is demonstrated in Figure 4.

The access to feature trace models is obtained through the
, Controller singleton class contained in the core module of
Figure 3. Feature trace model of Featureoyge 5t requs. Apart from providing the access to trace set,

22

IADIS International Conference Applied Computing 2010

Controller exposes a number of helper methods, such as: loading and unloading of traces, splitting and
merging traces, defining the global relation of similarity between traces (e.g. based on code sharing vs. based
on instances co-usage) and defining Hifnity categories (Greevy and Ducasse, 2005). The affinity
categories can be used by the views to enrich their representations and to provide a correspondence to other
views. Depending on the level of participation in implementing features, the three affinity categories
determine whether a computational unit is an infrastructural unit (used by at least 50% of features), a group-
feature unit (used by more than one, but less than 50% of features), or a single-feature unit. The affinities are
represented by their respective colors: green, blue, and red. We enhance the original representation of
affinities to display the shades of affinity color hinting how strongly a computational unit belongs in an
affinity category. The darker the color the more features a computational unit belongs to. The affinity
coloring indicates the level of reuse of computational units across features.

The example view implemented ir ,)) -

. . . @per vi ceProvi der (servi ce=Feat ureTraceVi ew. cl ass, posi ti on=7)
F|gure 4 is created by eXtendmg th public class Exanpl eView extends GenericTraceView {
GenericTraceView abstract class and)
implementing its abstract methods. Tk puglu:)(e:r(E?'(aExnglrrglwea\(ez/\l',{ nul |, Exanpl eVi ew. cl ass);
three abstract methods are used in templ setName("This is an exanple view');
method pattern in the base class and ¢ }
called by it upon the creation, update « public void createview) {
trace qata and clos_ure of the view. A vie (S:gpifl'slalc:lr\/bccie|:>cgptr;0|=l grggtefrlr giégfﬁg?;get Al l Traces();
class implemented in the presented way String meg = "No. of traces |oaded: " + ftms.size();
dynamically discovered by Featureou ~ Jlabel status = new JLabel (msg);

. K thi s. set Layout (new Bor der Layout ());
without the need for their presence i this. add(status, BorderLayout.CENTER):
compile time. Each of the found views i 1}
then represented by a button in the ma ,upiic void updateview) { ... }
toolbar of Featureous. Automatic discovet
of views is done by using the lookuy,
mechanism of NetBeans RCP. Featureor
looks up all the providers of the Figure 4. Extending Featureous.

FeatureTraceView service, and adds them to the toolbar. The example view in Figure 4 is declared as a
service provider by annotating the declaration of its class.

Based on the mechanism for extending Featureous with new views and the API that exposes feature trace
models, we have implemented a number of feature-centric views defined in the literature. During this
process, we have discovered that some of the views are complementary to each other and can be combined
and that all the views can be adapted to use the global affinity-coloring scheme discussed earlier.

public void closeViewm() { ... }

5. FEATURE-CENTRIC MODIFICATION — A CASE STUDY

In this section, we use a case study to present three feature-centric views and demonstrate their application to
supporting a feature-centric modification of a legacy object-oriented program.

The case study being presented is concerned with a program built on top of the JHotDraw 7.2 framework
called SVG (JHotDraw frameworkitp://jhotdraw.org). SVG is a vector graphic-based drawing editor for
Java. The program consists of 62K lines of code and contains significantly high number of features for the
case study to be considered a realistic application scenario. The task under investigation was to modify the
export feature of SVG so thatweatermark text is added to any exported drawing file. It is worth mentioning
that prior to conducting this case study we had no significant exposure to the implementation details of SVG.

First, we had to establish traceability links between features and source code of SVG. To achieve this, we
needed to recover the list of features of SVG, since no requirement specification documents were available.
In order to identify features of SVG, we have inspected the executing application. We have performed this by
investigating user-triggerable functionality in graphical user interface elements like the main menu,
contextual menus, and toolbars. We have identified 28 features, whose 91 feature entry point methods we
have annotated in JHotDraw's source code. By manually triggering each identified feature at run-time in the
instrumented SVG program, we obtained a set of feature traces that were the input to feature-centric analysis.

23

ISBN: 978-972-8939-30-4 © 20010 IADIS

Firstly, we wanted to estimate the effort needed to perform the intended modification task. This was done
using our enhanced version of the feature characterization view (Greevy and Ducasse, 2005). This view can
be specified in terms of our conceptual analysis framework presented in Section,3aasdp}. Feature
characterization view is designed as a bar chart summarizing implementations of features. Each feature is
represented here by a separate bar, by whose height we indicate the scattering (Brcina and Riebisch, 2008) of
feature over computational units (either packages or classes). The coloring of bars shows the distribution of
the computational units within the affinity-based categories. In addition, this information is shown within
bars also as a distribution profile plot. This fine-grained information on the characterization of contributing
computational units gives an impression on how difficult it would be to change the implementation of a given
feature without affecting the rest of a program'’s functionality. I.e. changing a red-colored unit will only affect
the feature itself, whereas changing green or blue units will affect other features as well.

Feature characterization The results of feature characterization obtained for SVG for
000350 | : granularity of class_es are shown_in Figure 5. It can be seen that the
000900 .gi;aj;r;‘;;f:f;ﬂt export feature, which is responsible for exporting drawings from
EEE;; F W single feature unit | tE program_’s_ canvas to_ various file formats, C(_)ntalns_only one
£ 0 ooz2s FF feature-specific class. This indicates that there exists a high chance
T 000200 | that our modification of this feature will affect the correctness of
A some other features in the program due to the high degree of code
0.00125 sharing. Another feature that we are interested in, in the context of
o oo our modification task, is thext tool feature. Because this feature
0.00050 :: is responsible for drawing the text-based shapes on the program
ponooe ii AL] canvas, it should contain classes that we have to use to
S S PR g programmaucally draw a watermgrk text in exportgd .drawmgs.
& 0 T @5\‘{@“@ The relatively low value of scattering of this feature indicates that
. we will not have to visit many classes in order to find the ones that

: o we need to reuse.
Figure 5. Feature characterization of SVG. In order to identify the classes that are useddst/ tool for
creating a text figure on canvas we used the navigable trace inspector. Trace inspector provides traceability
from features to contents of feature traces and is defined in terms of our conceptual framewerlesas {p
0123 Trace inspector's window, depicted in Figure 6, contains a hierarchy of nodes symbolizing the
packages, classes and methods that implement a feature. The tree nodes symbolizing classes and methods can
be used for automatic navigation to their corresponding source code fragments in the NetBeans editor. The
methods annotated as feature entry points are marked in the hierarchy tree using a distinct icon, due to their
special role in implementations of features.

By visiting the classes that contribute the text tool feature and
@ ket kool
4 @ org.hotdraw,chaw using the navigable traceability to their source codes, we have
located the clasSVGTextFigure, which is the candidate class that

we will use for creating watermarks in exported drawings.

We use the same view to find the class that performs the export
of drawings. As the export activity consists of a chain of
invocations that involves many classes, there exist many possible
places where a drawing could be equipped with a watermark
before exporting. We choose to do it in t8¢GView class that
implements a view for a single SVG drawing. This class contains
an export method that we can modify to achieve our goal and it
aggregates a drawing panel, through which it is possible to access
and modify the drawing being exported. Usage of feature-centric
analysis was of significant help during localization of this class, because of ubiquitous usage of
polymorphism in the JHotDraw framework. The indirection provided by polymorphism would otherwise be a
significant obstacle to finding the concrete classes that carry out export-related functionality in SVG.

To add the watermark to a drawing being exported we have modifiesttie method of theSVGView
class. In order to ensure that the modifications made will have no impact on other features of the program
(e.g. thedrawing persistence feature, which could also invoke tlgport method), we have used the editor
coloring view of Featureous. Featureous enhances the default code editor of the NetBeans IDE to provide
feature-centric information about participation of source code in implementations of features. This view can

+ (@ org.jhatdraw. geom
+ (@ org.jhotdraw samples.svg
—I:‘] org. jhokdraw, samples, svg.figures
@ SvGAttributedFigure
5@} SvGTextFigure
; (@ S¥GTextl QOO SOUFCE rring)

() getBounds(}
M) getDrawingArear)

Figure 6. Navigable trace inspector.

24

IADIS International Conference Applied Computing 2010

be defined in terms of our conceptual framework asdp o 3. Figure 7 shows how Featureous uses color

bars next to the editor to visualize the affinity of the viewed source code fragments. The bars allow for
immediate assessment of source code with respect to its participation in features. Furthermore, traceability
from source code to concrete features is provided in form of tooltips associated with the color bars. The
functionality provided by the editor coloring not only supports the understanding of source code in terms of
features it implements, but also simplifies the reasoning about possible consequences of source code
modifications on the correctness of program’s functionality.

350 super.setEnabled (newValue) ;
351 i
352
@ fFeatureEntryFoint (JHotDrawFeatures. EXFORT)
354 [public wvoid export (File £, javax.swing.filechooser.FileFilter filter,
355 outputFormat formart = fileFilceroutputFormatMap.get (filter)
356 if [('f.getMNawe () .endsWith("." + format.getFileExtension()i] |
3587 f = new File(f.getPath(] + "." + format.gecFileExtenzsioni)):
358 [export] H
359 SVGTextFigure watermark = new 3VGTextFigure ("Exported froom 2WE") ;2
360 svgPanel.getbrawing () .add (watermark) ;
361 format .write (£, svgPanel.getDrawingi());
362 svgPanel.getbrawing () . remove [watermark) ;

Figure 7. The performed modification in colored code editor.

As shown in Figure 7, we add a simple watermark to the drawing (lines 359, 360) before it is written to
the output file by invokingormat.write() and remove it afterwards (line 362), so that the drawing being
further edited in the SVG program is not altered with the watermark. During the implementation of this
change, we used the affinity-colored bars to ensure that our modification will not affect features other than
export. As indicated by editor coloring, tlegport method is feature-specific, even though the enclosing class
participates in four other features.

Summary of the case studyln this case study, we have modified one of the features of the JHotDraw
SVG program. The change adoption process was supported by three feature-centric views built on top of the
Featureous infrastructure. It is our experience that the usage of feature-centric analysis reduced the extent of
necessary investigations of unfamiliar source code and allowed us to reason about the impact of the
performed modification for the overall correctness of the program.

6. CONCLUSION

As mentioned previously, there exists a lack of isomorphic correspondence between the users’ and the
programmers’ perception of object-oriented programs. This becomes problematic during software evolution
and maintenance, because the implementations of features requested by the users to be modified are not
evident from the object-oriented source code. Hence, there is an urgent need for tool-supported analysis
approaches, which will help developers to understand the correspondence between features and code.

In this paper, we have presented our solution: a novel tool infrastructure and conceptual framework for
implementing feature-centric analytical views of legacy object-oriented programs. Our infrastructure called
Featureous is implemented as a plug-in to the NetBeans IDE. Featureous provides a lightweight mechanism
for recovering the feature-code traceability links and an API for implementing third-party extensions. Our
tool infrastructure comes with implementations of a number of state-of-the-art feature-centric views, three of
which we have presented in our case study. The case study performed on JHotDraw SVG demonstrates how
feature-centric analysis can be used to aid modification tasks during software evolution and maintenance.

We hope that the provided infrastructure Featureous will help researchers to experiment with feature-
centric analysis of software. Motivated by our experiences reported in this paper, we believe that usage of
feature-centric analysis tools such as Featureous can improve the performance of adopting functionality-
related changes during software evolution. In a long perspective, we hope that improved understanding of
feature-code relations may improve the practices of implementing features in object-oriented programs.

25

ISBN: 978-972-8939-30-4 © 20010 IADIS

ACKNOWLEDGEMENT

We would like to thank Kemal Pajevic for providing feature analysis software — a predecessor of Featureous.

REFERENCES

Brcina, R. and Riebisch, M., 2008. Architecting for evolvability by means of traceability and features. Automated
Software Engineering - Workshops. ASE Workshops 2008. 23rd IEEE/ACM International Conference on. pp. 72-81.
Chen, K. and Rajlich, V., 2000. Case Study of Feature Location Using Dependence Graph. IWPC '00: Proceedings of the

8th International Workshop on Program Comprehension. p. 241 IEEE Computer Society, Washington, DC, USA.

Cornelissen, B. et al, 2009. Trace Visualization for Program Comprehension: A Controlled Experiment. In: Marcus, A.
and Koschke, R. (eds.) Proceedings of the 17th International Conference on Program Comprehension (ICPC'09). pp.
100-109 IEEE Computer Society, Washington, DC, USA.

Eisenberg, A.D. and De Volder, K., 2005. Dynamic Feature Traces: Finding Features in Unfamiliar Code. ICSM '05:
Proceedings of the 21st IEEE International Conference on Software Maintenance. pp. 337-346 IEEE Computer
Society, Washington, DC, USA.

Greevy, O. and Ducasse, S., 2005. Correlating Features and Code Using a Compact Two-Sided Trace Analysis Approach.
CSMR '05: Proceedings of the Ninth European Conference on Software Maintenance and Reengineering. pp. 314—
323 IEEE Computer Society, Washington, DC, USA.

Greevy, O. et al, 2007. How Developers Develop Features. CSMR '07: Proceedings of the 11th European Conference on
Software Maintenance and Reengineering. pp. 265-274 IEEE Computer Society, Washington, DC, USA.

Greevy, O., 2007. Enriching Reverse Engineering with Feature Analysis. PhD thesis. University of Bern.

Kéastner, C. et al, 2008. Granularity in Software Product Lines. Proceedings of the 30th International Conference on
Software Engineering (ICSE). pp. 311-320 ACM, New York, NY, USA.

Mehta, A. and Heineman, G.T., 2002. Evolving legacy system features into fine-grained components. ICSE '02:
Proceedings of the 24th International Conference on Software Engineering. pp. 417-427 ACM, New York, USA.

Murphy, G.C. et al, 2001. Separating Features in Source Code: An Exploratory Study. ICSE 2001: International
Conference on Software Engineering, , p. 0275.

Olszak, A. and Jgrgensen, B.N., 2009. Remodularizing Java programs for comprehension of features. Proceedings of
International Workshop on Feature-Oriented Software Development. pp. 19—-26 ACM, New York, USA.

Robillard, M.P. and Murphy, G.C., 2002. Concern graphs: finding and describing concerns using structural program
dependencies. ICSE '02: Proceedings of the 24th International Conference on Software Engineering. pp. 406—416
ACM, New York, NY, USA.

Rothlisberger, D. et al, 2007. Feature driven browsing. ICDL '07: Proceedings of the 2007 international conference on
Dynamic languages. pp. 79-100 ACM, New York, NY, USA.

Ryder, B.G. and Tip, F., 2001. Change impact analysis for object-oriented programs. Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering. pp. 46-53 ACM, New York,
USA.

Salah, M. and Mancoridis, S., 2004. A Hierarchy of Dynamic Software Views: From Object-Interactions to Feature-
Interactions. ICSM '04: Proceedings of the 20th IEEE International Conference on Software Maintenance. pp. 72-81
IEEE Computer Society, Washington, DC, USA.

Shaft, T. and Vessey, |., 2006. The Role of Cognitive Fit in the Relationship Between Software Comprehension and
Modification. MIS Quarterly, 30(1). pp. 29-55.

Tarr, P. et al, 1999. N degrees of separation: multi-dimensional separation of concerns. ICSE '99: Proceedings of the 21st
international conference on Software engineering. New York, NY, USA: ACM, pp. 107-119.

Turner, C.R. et al, 1999. A conceptual basis for feature engineeridaurimel of Systems and Soft., vol. 49, pp. 3-15.

Wilde, N. and Scully, M.C. 1995. Software reconnaissance: mapping program features to code, Journal of Software
Maintenance, vol. 7, pp. 49-62.

Wong, W.E. et al, 2000. Quantifying the closeness between program components and features, J. Syst. Softw., vol. 54, pp.
87-98.

26

IADIS International Conference Applied Computing 2010

STRUCTURED AND FLEXIBLE GRAY-BOX
COMPOSITION: APPLICATION TO TASK
RESCHEDULING FOR GRID BENCHMARKING

Ismael Mejia and Mario Sudholt
ASCOLA team (EMN-INRIA, LINA), Département Informatique, Ecole des Mines de Nantes, France

ABSTRACT

The evolution of complex distributed software systems often requires intricate composition operations in order to adapt
or add functionalities, react to unanticipated changes to security policies, or do performance improvements, which cannot
be modularized in terms of existing services or components. They often need controlled access to selected parts of the
implementatione.g, to manage exceptional situations and crosscutting within services and their compositions. However,
existing composition techniques typically support only interface-level (black-box) composition or arbitrary access to the
implementation (gray-box or white-box composition).

In this paper, we present a more structured approach to the composition of complex software systems that require
invasive accesses. Concretely, we provide two contributiongj)waresent a smakernel composition language for
structured gray-box compositiamith explicit control mechanisms and a corresponding aspect-based impleme(itation;
present and compare evolutions using this approach to gray-box composition in the context of two real-world software
systems: benchmarking of grid algorithms with NASGrid and transactional replication with JBoss Cache.

KEYWORDS

Software Composition, Software Engineering, Distributed Software

1. INTRODUCTION

The evolution of large-scale distributed software systems often requires the unanticipated introduction of new
functionalities or the modification of existing ones. Such evolution tasks are often inherently difficult
because of two fundamental problems. First, the compositions cannot be expressed only in terms of the
interfaces of the involved systems (non-invasive modifications) but also imply changes to some (typically
limited) parts of the corresponding implementations. Second, the compositions often involve functionalities
that are not well modularized in the existing systems or in the resulting composed system. Such composition
problems occur frequently in legacy ERP systems ¢hgt,to cope with new security requirements imposed

by changing legal frameworks, such as the Sarbanes-Oxley act in the U.S. (such evolution problems for SAP
AG's SOA infrastructure are consideredy.in the CESSAresearch project).

?Benchmark Bench(:lie*nt DGArc ? DGraph Executor ||NGBRun||NodeMan BT CcG FT IS
BenchServer BMUni0n¥ DGNode DFGAdapter BMRequest BMResult Ly MG || SP
Benchmarking Graph Manipulation Request/Exception Handling Computational Tasks

Figure 1. NASGrid: application structure and scheduling-relevant code parts

As a concrete real-world example (that we will consider in more detail later on), we have studied NASA’s
NASGrid benchmarking infrastructure for computational grids (Frumkin R. et al, 2001). This benchmark is
used to time grid computations that may execute on different communication topologies. Fig. 1 shows the

! This work has been supported by the CESSA project (ANR 09-SEGI-002-01, see cessa.inria.gforge.fr).

27

ISBN: 978-972-8939-30-4 © 20010 IADIS

main components, shown with gray background, of the NASGrid benchmarking frameworks: three sets of
classes that respectively provide a benchmarking interface, exception handling (principally of network
conditions), and management of the graph structure representing the graph communication topology (the
remainder of the system being constituted essentially by routines for numerical algorithms, called
computational tasks in the figure).

NASGrid basically executes computations on distributed nodes and forwards intermediate results
according to communication dependencies defined in terms of a topology graph. Grid computations are
aborted in the case of exceptions, such as severe network errors; task rescheduling in the case of exceptions is
not supported. We have investigated an evolution of NASGrid to add this useful functionality that fits well
with existing, frequently long-running, grid applications. Our analysis of the existing code base has shown
that the extension of NASGrid by task rescheduling partially requires modifications to the existing interfaces
(i.e. sets of public classes and methods that are marked by disks in Fig. 1). However, the extension also
requires some access to the NASGrid implementation because the necessary modifications as a whole are
crosscutting with respect to the existing structure of NASGrid (the corresponding classes are marked by stars
in Fig. 1).

Performing such evolutions using mainstream languages or development methods is highly difficult and
error prone: (i) the crosscutting nature of such evolutions involve a potentially large number of modifications
that have to be carefully synchronized; (ii) structural means and semantic properties should be supported in
order to control the effects of invasive modifications to implementations.

In this paper we present an approach of structured invasivegray-box, composition that supports
accesses to interfaces and implementations through compositions of basic programming patterns for invasive
access, resulting in gray-box compositions whose degree of invasiveness and their impact on an
implementation can be controlled explicitly and flexibly. Furthermore, these operators allow crosscutting
functionalities that are part of the subsystems to be expressed modularly.

Concretely, we present two contributions: First, we introduce in section 2 a kernel language for invasive
composition that enables explicit and expressive compositions of invasive distributed patterns (Benavides L.
et al, 2007) (henceforth simply called invasive patterns). Invasive patterns and compositions thereof provide
flexible control of gray-box compositions and support the modularization of crosscutting functionalities
using aspect-oriented programming techniques (Kiczales G, 1996). We also briefly present an
implementation of this kernel language using the AWED system (Benavides L. et al, 2006), (AWED website,
2010) for explicitly-distributed AOP. Second, in section 3 we present and evaluate how our approach
supports an evolution scenario of NASGrid that add task rescheduling. This extension is non-trivial,
interacting with the original application at 28 places and is modularly implemented by an aspect and four
new ordinary classes. Finally, we briefly compare the corresponding composition properties with those of
two other case studies we have performed as part of previous work: a less invasive evolution of NASGrid for
checkpoint introduction; and a highly invasive evolution of JBoss Cache, a middleware for transactional
replication of data in distributed systems.

Our results show that invasive compositions allow a whole space of evolutions that require invasive
modifications to be expressed while maintaining much higher control of the impact of invasive
modifications, and this for systems requiring from moderately invasive to highly invasive accesses. As to our
knowledge, no other approach to gray-box composition has been applied to such a range of evolution
scenarios nor provides a comparable level of control of effects.

2. STRUCTURED AND FLEXIBLE INVASIVE COMPOSITION

Evolution scenarios as discussed in the previous section require three essential requirements to be addressed:

R1) Enable (modifications to) the coordination of distributed communications and computations.

R2) Support modularization of crosscutting functionalities that are subject to evolution tasks.

R3) Provide structural and property-based control over modifications, in particular invasive ones.

From a general point of view, we address these three issues as follows: we exploit invasive patterns as
basic abstractions in order to express coordination and communication requirements of distributed
applications that involve crosscutting functionalities. We introduce a composition language over patterns that
enables the definition of structured and flexible pattern compositions whose effects may be coetlled,

28

IADIS International Conference Applied Computing 2010

by limiting invasive accesses to contexts defined by event sequences. In the remainder of this section we
briefly revisit the notion of invasive patterns for distributed programming and then define a kernel language
for the flexible composition of such patterns. Finally, we show how such pattern compositions can be
implemented in terms of the AWED system (Benavides L. et al, 2006), a system for distributed aspects.

2.1 Invasive Patterns

Invasive patterns (Benavides L. et al, 2007) have been introduced as generalizations of standard parallel and
distributed programming patterns. Fig. 2 shows the three invasive patterns we consider: a gather, a farm and a
pipelining pattern. All of these patterns match sequences of execution events (illustrated by the dotted curves)
over calls to interface methods or methods called in the implementation. These sequences are matched on one
or several source nodes, construct data (using a computation represented by the filled rectangle on the source
nodes) that is sent to a number of one or several target nodes and integrated into the computations there (as
represented by the filled rectangle on the target side). Invasive patterns allow quantifying over sets of source
and target nodes, in particular, the event sequences that trigger actions as well as the actions themselves.

~» Event sequences

T ; o Group (elements)
B Data preparationfintegration

Sources

Follow pattern

Target (Source)

b) farm b) pipeline

Figure 2. Invasive patterns

Invasive patterns provide basic support for the three requirements mentioned above: as frequently used
patterns for distributed programming, they support distribution coordination (R1); modularization of
crosscutting functionalities (R2) can be achieved by means of aspects for the definition of event sequences
(history-based pointcuts in AOP-speak) and actions (advice in AOP-speak) that compute data to be
transferred from source to target nodes and that integrate data into target computations. Finally, some control
over accesses and computations is provided by their fixed overall structure.

2.2 A Kernel Language for Non/Invasive Composition

In this paper, we introduce a composition language over invasive patterns in order to fully address the
requirements for evolution tasks. We strive, in particular, for a language that enables flexible compositions of
patterns to handle more complex crosscutting functionalities and provides better control over, possibly
invasive, modifications performed by pattern compositions.

Prog == Op ; Programs Adap == e | eg | P | Adap ; Adaptations
Op o= (Ctx,Adap) ; Operators P = (Op,0Op) ; Patterns
Ctx == e | eg | Ctx : Contexts G = if(B) | h : Guards

Figure 3. Kernel language for invasive composition

Fig. 3 presents the essentials of our kernel language for invasive composition. Some remarks on notation:
non-terminals, such &@p or P start with an upper case letter and are set in italic font; lexical categories, such
ase are denoted by lower case, italic letters; terminals, such as if set in typewriteX fd@motes finite

29

ISBN: 978-972-8939-30-4 © 20010 IADIS

sequences of expressions of non-termia{A more elaborate version of the language that suppmags,
repetitions in form of regular expressions is in preparation but not needed for the extension of the NASGrid
application by dynamic task rescheduling considered in this paper).

The intuition behind this core language is as follows: operators match contexts that trigger sequences of
adaptations. Contexts are built from event sequences that may be guarded. Adaptations include simple
manipulations enabling the insertion of glue code, such as communication statements, but also potentially
complex pattern compositions built from the three invasive patterns introduced above.

The grammar defines four main syntactic categories: (evolution) prodtergsoperatorsOp, contexts
Ctx and adaptationddap (Evolution) programsare sequences over evolution operations (instantiations of
invasive patterns or pattern compositions). dperatoris defined as a pair of a context and an adaptation.
Contextsconsist of sequences of guarded events3)fi.e., events that may be matched on specific hosts or
under specific conditions (represented Byythe nature of which is unspecified here; typically we expect
conditions of limited expressiveness to support property analysis and verification).

Adaptationscome in two forms: sequences of (i) possibly guarded events that represent (computation or
communication) glue code potentially triggered on specific hosts and under specific conditions; (ii)
structured adaptations in form péttern compositions Fhat are pairs of sequences of operators. Such a
pattern, says,t) denotes adaptations on soursesd targets, typically the extraction of data on sources that
are send for further handling to the targets. Note that patterns and pattern compositions may form both the
context and adaptation parts of the operators.

Our language directly supports very flexible pattern compositions. As a simple example (that has been
applied for NASGrid task rescheduling) consider an application of a farm-pattern followed by a gather
pattern. The farm will match an event sequence on one node, extract information, send and inject it into a
number of target nodes. The gather pattern will then monitor for event sequences on its source nodes that, in
its simplest case, are the target nodes of the farm pattern, extract information on the source nodes of the
gather pattern and inject them in its target node.

2.3 Implementation using distributed Aspectsand AWED

The AWED system (Benavides L. et al, 2006) provides an aspect model for distributed systems that provides
means for the monitoring of sequences of events, history-based pointcuts in AOP-speak, that occur on
different (groups of) hosts. Such event sequences are described in terms of guarded finite-state systems;
AWED also provides various means to trigger actions, advice in AOP, where the corresponding pointcut-
defining event sequences are matched.

The language above can be implemented using AWED in terms of event sequences that define the,
interface level or implementation-level, contextX in the above grammar) and use actions to define
adaptationsAdap. Invasive patterns (farm, gather and pipeline) are then implemented as pairs of aspects
corresponding to source and target computations of the patterns. Pattern compositignsy gay are
implemented by aspects that match end-marking evens iand trigger execution op,. We have
implemented task rescheduling for NASGrid using AWED this way.

Fig. 4 shows the main component of the implementation of the task rescheduling aspect. Here, the
pointcut taskRescheduling (lines 4-11) defines a mixed interface/implementation-level context that identifies
exception occurrences (state EXCEPTION) and, possibly repeated, choices of alternative available hosts
(state LOOKUP). The second advice (lines 18-27) chooses an alternative and restarts the beinehmark (
triggers a farm pattern that sends info to the successor nodes of the current one). Overall, this language
provides flexible structured invasive access through pattern compositions that may be subjected to explicit
control through predefined compositions and the precise definition of application contexts by means of event
sequences.

Implementing composition of invasive patterf$g. 5 shows an interface we have developed that
represents a subset of the above language that makes explicit invasive patterns and pattern compositions. The
pattern composition constructors enable building of compositions from simple operators (constructor op),
sequences of compositions (seq), and compositions of farm and gather patterns (the latter two being
expressible as sequences and are necessary for the task rescheduling example).

30

IADIS International Conference Applied Computing 2010

aspect TaskReschedulinghspect percobject |
EMRequest regquest;

pointcut taskRescheduling():

.1} && host(localhost) >
host (localhost) > EXC
Ol: ealli* EBenc %% host|(localhost) >
: eall (* NodeManager.is Il &4 'hostilocalhost) > F
: calli* BenchServer.PutArcData({..)) %& hosti{localhost) > START;

: call(* Bench
call(* BenchUni

rver.configsScheduling

| LOOKUE;

r} thisJoinFoint.getCal

Args () [0];

18 after(): step(taskRescheduling(), LOOKUE) {

19 NodeManager nm = ({MNodeManager) thisJoinPoint.getCalledObject(};

20 String newHost = nm.getHostId({); double loadhvg = nm.getLlocadAverage(); ./ farm pattern

21 if | uateHostDoS5 (newHost, loaddwvg)) |

22 dapter adapter = DF pter.fromGraphireq.dfg); adapter.updateGraphbefinition(newHost);
Rk} nchlUnicn comp = new BenchUnicn(reg); \\ gather pattern

24 comp.startBenchmark() ;

25 } else |

26 nm. lookNewNode () ;

7 T

Figure 4. Implementation of task rescheduling in NASGrid using AWED

interface InvasiveOp<Source, Target>
InvasiveOp<Source, Target> farm(Source src, Collection<Target> dests);
InvasiveOp<Source, Target> pipeline(Collection<Source, Target> steps);
InvasiveOp<Source, Target> gather(Collection<Source> origs, Target dest);
}

7 | public interface InvasiveComp<Source, Target>

8 InvasiveComp<Source, Target> op(InvasiveOp<Source, Target>);

9 InvasiveComp<Source, Target> seq(InvasiveComp<Source, Target> ops);

10 InvasiveComp<Source, Target> farmGather (InvasiveOp<Source, Target> farm, InvasiveOp<Source, Target> gather);
11 InvasiveComp<Source, Target> gatherFarm(InvasiveOp<Source, Target> gather, InvasiveOp<Source, Target> farm);

Figure 5. Invasive Composition Interface

3. STRUCTURED AND FLEXIBLE INVASIVE COMPOSITION

In this section we consider the implementation of evolution scenarios using invasive patterns in the context of
two real-world software systems of medium size, the NASGrid application (ca. 21 KLOC) and the JBoss
Cache middleware for distributed caching under transactional control (ca. 50 KLOC). Concretely, we present
the task rescheduling evolution for NASGrid in more detail, especially its use of invasive composition and
how our language can be used to exert control over invasive modifications. Furthermore, we briefly compare
the composition characteristics of the task rescheduling case study with two other evolution scenarios that we
have previously performed using invasive patterns but without explicit support for the composition of
patterns. This comparison shows that compositions of invasive patterns allow to cover a whole range of
evolution scenarios, from limited invasive ones to highly invasive ones and that the flexible pattern
compositions our language supports simplify such evolution tasks.

3.1 Invasive Composition for NASGrid Task Rescheduling

NASA’s NASGrid benchmark allows to time grid applications that are deployed on different hardware
topologies; communication paths taken as part of a grid application are represented in NASGrid using a
topology graph. Each computation on a node is modeled using an individual worker thread that executes
some numerical computation, using building blocks, such as LU matrix decomposition and Fourier
transforms (FT). These computational tasks are supervised by a coordinator thread which forwards the results
to other nodes as defined by the topology graph.

The main obstacle for adding task rescheduling as a strategy for improving fault tolerance in the case of
network or node failures, is the static topology representation and benchmark execution in NASGrid. More
concretely, in terms of the NASGrid system architecture shown in Fig. 1, the graph manipulation part does
not accommodate topology changes, and the benchmarking part does not allow to probe the status of network

31

ISBN: 978-972-8939-30-4 © 20010 IADIS

connections, or to test the availability of remote hosts, or to modify the routing of data between nodes. Our
extension to NASGrid introduces these features and exploits them when exceptional situations occur. In
order to achieve that goal we have to extend the interfaces (of interfaces and classes marked disks in the
diagrams) and the implementation of the classes (that are marked by stars in the figure) at multiple points.
Note that a almost all disks or stars represent several modifications within the same interface or class.
Overall, NASGrid has to be modified at 28 locations to extend it modularly by the task rescheduling
functionality.

In order to give a concrete idea of which code manipulations are involved in invasive accesses and pattern
compositions, let us first have a look at the code excerpt shown in Fig. 6. This excerpt shows the NASGrid
code for localization and propagation of data between nodes. In case that a remote node is unavailable (lines
14-17) no reaction is taken and the exception is only passed along. However, as this method makes explicit
the data on the real successor nodes of the current node (lines 4-8), we have to access it to update the new
node information with the corresponding data after rescheduling.

I |public int PutArcData (BMRequest req,BMResults res)

2 throws RemoteException {

3 DGNode nd=req.dfg.node[req.pid];

4 BMRequest lreq[]=new BMRequest [nd.outDegree];

5 // ... process info

6 for(int i=0;i<nd.outDegree;i++){

7 lreq[i]=new BMRequest (req); -

8 // ... clone arg info t l O—.O
9 try { ‘s - O :

10 Benchmark RemBench = (Benchmark) Naming.lookup("//"+ EXCEDPTION LOOKU' RESTART

11 lreq[i] .MachineName+"/BenchmarkServer");

12 lreq[i].tmSent=System.currentTimeMillis();

13 RemBench.SendData (lreq[i], res);

14 } catch (Exception e) {

15 // ... print exception stacktrace

16 throw new RemoteException ("BenchServer exception: ", e);

17| 11}

Figure 6. Class BenchServer (fragment) task rescheduling Figure 7. NASGrid invasive composition

We have extended NASGrid with the help of invasive composition operators implemented with
sequences in AWED as presented in Fig. 4. This required the extension of two interfaces: Benchmark to
enable dynamic task rescheduling, and DGraph to permit the dynamic modification of the graph. We also
used controlled invasive accesses to inject new code for coordination that corresponds to the identification of
the precise context in which exceptional situations have to be handled by means of a sequence of events, and
then a farmGather composition operator (cf. 5). Fig. 7 illustrates the resulting compositional algorithm
(which gives a high level view of the patterns involved to modularize the task scheduling functionality):
when a benchmarking execution fails (represented by the dashed circle) the exception is matched, and an
execution of a farm pattern that sends a request to all successor nodes is triggered. We then use a gather
pattern to collect the availability and load average information of all successor nodes and proceed to select
the best available node (bold node in the figure) and reschedule the computation.

Concretely, using our AWED implementation this is performed using the rescheduling aspect shown in
Fig. 4, lines 4-11, we first identify exceptional situations as a context in which a correct initialization (state
CONFIG) and the start of a concrete benchmark (START) is followed by a relevant exception
(EXCEPTION) to the method Benchserver.PutArcData. We then get the list of successor nodes (state
LOOKUP) that are admissible by the topology of the grid application as defined by the user through the class
Nodemanager. At that point, the second advice is applied (lines 18-27) that applies the farmGather
composition in order to choose the best alternative and invasively modify the graph topology by a call to the
method adapter.updateGraphDefinition. Finally, we restart the benchmarking operation proper (RESTART).

The implementation of NASGrid consists of 20490 LOC. The task rescheduling concern is implemented
as a whole module using the concepts of invasive operators using 391 lines of code that correspond to the
TaskReschedulingAspect in AWED (97 LOC) and three auxiliary classes DFGAdapter, NodeManager and
TaskUtility (294 LOC). These classes perform the dynamic graph manipulation and manage the task
relocation to the new nodes. Overall we therefore achieve a concise, fully modularized and compositional
implementation of the extension of NASGrid by task rescheduling, Furthermore, the composition shown in
Fig. 7 provides very precise control on the contexts in which invasive modifications are performed and thus

32

IADIS International Conference Applied Computing 2010

enable, in principle, to model check properties over the event sequences defining such compositions (this is
however future work).

Finally, note that the overhead of task rescheduling basically consists, for each exceptional situation, in 1.
A sequence of a small number of locally executed instructions up to the exceptional situation, followed by 2.
A small number of parallel executions of sequences of two message exchanges for the farmGather
composition and 3. a small number of local instructions to reschedule the benchmark). This overhead is
clearly negligible compared to the execution of the benchmark itself in almost all use ieasesléss
exceptional situations abound, a case that should very rarely constitute a reasonable application of NASGrid).

3.2 Degrees of Invasive Composition

In previous work we have applied invasive patterns (without support for pattern composition as introduced
here) to two other evolution scenarios, an extension of NASGrid for checkpointing and an extension of the
replication strategy of JBoss Cache, an infrastructure for replication under transactional control that is part of
the JBoss Application Server.

Checkpointing in NASGrid. We have shown how a different reliability property of NASGrid can be
improved upon via checkpointing introduction (Benavides L. et al, 2008). A checkpointing algorithm for
error recovery defines a protocol to create checkpoints (snapshots of the distributed states), and guarantees
the global consistency by returning to a previously-recorded state in case of failure. As we have to only add
the snapshot creation and recovery actions, the degree of invasive access required is limited. It is restricted to
just the context definition that triggers the snapshot creation, and also includes invasive access to the
unexposed data structure in order to create its backup and play it back as part of the recovery.

Evolution of the JBoss Cache replication strategy. We have also shown how to extend the replication
strategy of JBoss Cache, an infrastructure that replicates data within a cluster of distributed nodes (Benavides
L. et al, 2007). The cache ensures that data replication is consistent with the transactional control over
independent accesses to a distributed database. The replication and transaction functionalities are heavily
crosscutting within the JBoss Cache implementation (accounting for more than 500 LOC in total scattered
over a code base of around 50 KLOC). This refactoring scenario required a high level of invasive access but
both concerns, replication and transactional behavior has been fully modularized using invasive patterns
(once again without explicit pattern compositions).

T = == guagggHﬂEQ .

= uéu

|
L]

a) NASGrid b) NASGrid Task rescheduling c) JBoss Cache transactional replication
checkpointing

Figure 8. Crosscutting diagrams for the three evolution case studies

Fig. 8 shows the degrees of crosscutting diagrams for the three examples. Since we have been able to
perform all three evolutions in a fully modular way using invasive patterns, this provides solid evidence that
our approach scales from applications that are using limited invasiveness and crosscutting to applications
with concerns that are highly invasive and crosscutting.

To conclude the discussion of applications of our approach, we briefly discuss if and how we can exploit
the additional control we provide through the composition language introduced in this paper. Let us consider
the checkpointing introduction and replication strategy extension scenarios. In the following we briefly
describe these extensions and compare how the approach presented here can improve on the previous
solutions. First, the pattern applications used in the NASGrid checkpointing evolution can straightforwardly
be expressed using our pattern composition language and the resulting additional control wouidgaltow,
reason over the correctness properties of checkpoint-based recovery (which is, admittedly rather simple in
this case anyway due to the limited invasive nature). In the case of the JBoss Cache replication evolution, the

33

ISBN: 978-972-8939-30-4 © 20010 IADIS

additional control provided by our composition language is crucial in order to provide crucial correctness
properties, such as the absence of certain race conditions during replication. This is also future work.

4. RELATED WORK

Our work is mainly related to three types of wadfilk:other approaches to gray-box composition of software
entities, (i) approaches that use aspects in order to invasively manipulate software entities, mostly
components, andii) work that advocates the use of patterns for distributed programming. None of these
approaches, however, provides such flexible compositions of patterns for invasive composition that can be
controlled precisely using a composition language. Because of space constraints we only discuss a few most
relevant works. The probably best-known analysis of gray-box composition and an approach relying on code
entities with holes as basic building blocks has been presented by (ABmann U, 2003). Composition can be
controlled by standard abstraction mechanisms such as component parameterization. This approach is
however less structured than explicit pattern compositions and supports less precise control than ours.
(Lorenz D et al, 2003) present a model for so-called aspectual collaboration in which aspects can be used to
invasively modify software entities, mostly classes. Such aspect-based approaches provide no support in
form of compositions of basic entities we do, and support only very coarse-grained control over invasive
modifications. Patterns for distributed programming and massively programming (Cole M, 1989), (Schmidt
D, 1996) have been mostly used as design patterns for non-invasive programming. Our previous work on
invasive distributed patterns provide patterns as programming abstractions that can be composed manually
but without support of a flexible composition language.

5. CONCLUSION AND PERSPECTIVES

In this paper e have made the case for more expressive and structured means for flexible gray-box
compositions of distributed software systems. We have introduced a kernel language for structured flexible
gray-box composition that enables to concisely define and precisely control pattern composition. We have
sketched an aspect-based implementation of this language and applied it to a non-trivial extension of the
NASGrid system for grid benchmarking. Finally, we have provided evidence that our approach scales from
moderately to highly crosscutting applications. This work paves the way to the investigation of a (formally-
defined) theory of invasive composition. In the long term, the quest for a set of operators that is complete
with respect to a large number of evolution scenarios should be undertaken.

REFERENCES

ABmann U, 2003lnvasive Software CompositidBpringer Verlag, New York. USA
AWED website, 2010AWED home pagpnline] available at http://awed.gforge.inria.fr (Accessed on: August 7, 2010).

Benavides L. et al, 2008. Aspect-based patterns for grid programiringeedings of the 20th International Symposium
on Computer Architecture and High Performance Computing (SBAC-PADHEBIE Press.

Benavides L. et al, 2007. Invasive patterns for distributed progRimseedings of the 9th International Symposium on
Distributed Objects,Middleware, and Applications (DOA'OVi)lamoura, Algarve, Portugal.

Benavides L. et al, 2006. Explicitly distributed AOP using AWPBoceedings of the 5th ACM Int. Conf. on Aspect-
Oriented Software Development (AOSD'06)

Cole M, 1989 Algorithmic skeletons: structured management of parallel computdRitman.

Frumkin R. et al, 2001. Nasgrid benchmarks: a tool for grid space exploratigh. Performance Distributed
Computing pp. 315-322.

Kiczales G, 1996. Aspect oriented programmiPghceedings. of the International. Workshop on Composability Issues in
Object-Orientation (CIO0’96) at ECOQMPMeidelberg, Germany.

Lorenz D et al, 2003. Aspectual collaborations: Combining modules and agpecSomputer JournaVol. 46 No. 5.
pp 542-565.

Schmidt D, 1996. OO design patterns for concurrent, parallel, and distributed syBteoeedings of the Second
USENIX Conference on Object-Oriented Technologies and Systems (COOD8&)o, Canada

34

IADIS International Conference Applied Computing 2010

AN HYBRYD APPROACH FOR MODEL S COMPARISON

Samia Benabdellah ChaounMounia Fredj and Salma Mouline
*ENSIAS, Mohammed V Souissi University, Rabat, Morocco
** SR, Faculty of Sciences, Rabat, Morocco

ABSTRACT

Model integration problem occurs during the integration of enterprise information systems. Models comparison is an
essential step of the integration, and has been discussed in several domains and various models. However, previous
approaches have not correctly handled the semantic comparison. In the current paper, we develop a comparison hybrid
approach which takes into account the syntactic, semantic and structural comparison aspects. We provide a rule-based
system for models comparison. For this purpose, we use a domain ontology as well as other resources such as
dictionaries.

KEYWORDS

UML models comparison, Ontology, rules, metamodel

1. INTRODUCTION

The information systems domain has changed dramatically in recent years under the influence of
organizational evolution. This evolution can be of intern origin, generated by the restructuring of
organizations, creation of new subsidiaries or new geographic or changes in business activity. Result of these
factors, new information systems with their business models are created, the need to integrate existing
models to make them communicate and cooperate. This evolution may also be of external origin, explained
by the evolution of two organizations with the same activity domain who want merge. In this case, it must
merge their information systems and more specifically their models. The goal is to integrate these models
easily and efficiently.

Integration has been treated by several authors, for several models in different fields and contexts: the
schemas database integration (Spaccapietra and al., 94) and (Navathe and al., 86); integration of meta-models
independent models (UML, database schema, ...) (Haddar, 02) and (Pottinger and al., 03); views models
integration (Anwar and al., 07) and (Rubin and al., 08); partial UML class diagrams integration (Bbronat
al., 06), aspect-oriented UML models integration (Ferut, 06), (Quintian, 04), (Reddy., 06), (Lahire and
al., 06), (Olivier and al., 07) and (Fleuragyd al,. 07) ; and finally, ontology integration, which has been
treated in (Falquetdt al., 04), (Ouagnet al., 05) (Dorionet al., 07) and (Bouras et al., 07). We are interested
in our case in the UML models integration and more specifically the UML class diagrams (OMG UML, 09).
After the analysis of models integration existing works, we found that semantic integration is a crucial
problem. So far, this problem is still not properly treated. In this paper, we focus on models’ comparison (the
first stage of the integration process). We propose an hybrid approach which compares models syntactically,
semantically and structurally. For that, we use domain ontology and other resources. The analysis of models
integration existing work, we found that semantic integration is a crucial problem. So far, this problem is still
not properly treated.

This article is organized as follows: Section 2 is an introduction to the general approach of integration of
models. We mention in section 3 related works and their limitations. Our ontology-based proposal is
developed in section 4. Some research perspectives are finally developed in the conclusion section.

35

ISBN: 978-972-8939-30-4 © 20010 IADIS

2. MODELSINTEGRATION

The integration is defined as the combination of components in such a way as to form a new set constituting a
unit for creating synergy (Weston, 1993). Existing research (Batini and al., 86) (Pottinger and al, 03) has
shown that models integration process involves two steptheXpmparison step is based on a set of rules

called correspondence rules, also called comparison rules, mapping rules or matching rules which identify the
correspondence between elements of models (correspondences created during this step are stored in a
separate model called correspondence model or mapping modele;iB)egration step integrates models

mapped in the previous step. The integration strategy relies on rules that define which and how elements will
appear in the result model. These rules are (1) rules for merging the matching elements (merging rules), and
(2) rules for incorporating elements that do not belong to the mapping model (rules of integration).

3. RELATED WORK

Several studies have proposed models comparison. The authors (Manning, 99), (Haddar and al., 02) and
(Oliveira, 2009) provided a comparison of meta-model independent models. Databases comparison has been
treated in (Madhavan and al, 01) and (Reddy and al., 06). The authors provided a comparison of UML class
diagrams oriented aspects. In (Anwar and al.,07), a comparison of views models is proposed. (Uhrig et al.,
2008) develop a method to compare UML class diagrams. The specification of UML 2.1 (OMG UML, 09)
defines the comparison of packages.

We found different approaches of models comparison:

- Syntactic approaches: they compare the letters of strings of models elements.

- Semantic approaches: they compare the meaning associated with the compared items.

- Local structural approaches: they compare the components of the elements. For example, the
comparison of local structure of two classes corresponds to the comparison of their attributes and operations.

- Global structural approaches: compare elements in relation with the elements in question. For
example, the comparison of global structure of two relationships corresponds to the comparison of the two
classes they connect.

- Hybrid approaches: combine two, three or four types of comparison (syntactic, semantic, global
structure and local structure).

Let M1 and M2 be two models to compare. Most approaches commpaaetically models elements.
However, they only tesidentity of elements. (Madhavan and al., 01) also detects other correspondences
such asabbreviation (e.g. “Qty” in M1 and “Quantity” in M2) and thacronym (e.g. "UOM" in M1 and
"UnitOfMeasure" in M2). Moreover, most approaches structurally (local and global structure) compare the
models elements. Finally, all these works do not take into account the semantic aspect and are limited to
detection of synonyms (e.g. "Book" in M1 and "Work" in M2) and homonyms (e.g. two classes "Family"
(products) and "Family" (people)).

Our review showed on the one hand that existing works do not detect semantic mappings such as
digunction (e.g. two boolean attributes "Single" and "Married") aeder se (e.g. the relation "Buy" is the
inverse of "BoughtBy” relation). Syntactic correspondences such as inclusion syntactic (e.g. “Student” and
“Students”) and multilingual (e.g. “Nom” (In French) and “Name” (In English)) are not detected either. Any
approach is incomplet®ne may also emphasize that approaches are complementary, even though their
union does not cover all types of comparison and does not detect all matches (correspondences).

On the other hand, syntactic approaches are limited because they do not detect elements that are
syntactically identical but do not have the same meaning (case of homonyms) and elements which are
syntactically different but which have the same meaning (case of synonyms). In addition, non-semantic
approaches are limited because they do not detect elements that are syntactically different but semantically
identical. Non-local structural approaches are also limited because they do not detect elements which are
syntactically identical but different in local structure (e.g. two classes having the same name and no attribute
in common). Finally, non-global structural approaches are limited because they cannot detect elements that
are syntactically different and equivalent in global structure (e.g. two relations that are syntactically different
but connect two equivalent classes).

36

IADIS International Conference Applied Computing 2010

Therefore, our goal is to provide an hybrid approach incorporating syntactic, structural and semantic
aspects in order to detect any mapping or correspondence.

4. PROPOSITION

Our proposal is based on ontological techniques. We therefore briefly introduce ontology concepts, before
developing our approach.

4.1 Ontology

Ontologies are introduced as an’explicit specification of a conceptualization” (Gruber, 93). Domain
ontologies are ontologies which are built on a particular knowledge domain. Many domain ontologies exist
such as MENELAS (medical domain) (Zweigenbaum and al., 94) and TOVE (business management domain)
(Gruber, 95).The domain ontology is a semantically rich model (it can express equivalence, inverse,
disjunction, symmetry, transitivity, etc.), and is defined as an exhaustive list of concepts and relations
between these concepts describing a particular field (Medicine, Business, Library, Restaurants, etc.).

We use an OWL ontology (Ontology Web language) because it is a W3C recommendation (Smith and al.,
2004), and the meta-model OWL was defined by Ontology Definition Metamodel specification (ODM, 08)
of OMG". An ontology comprises the notion of "concept”, also called class, corresponding to the abstractions
of the relevant field. It has a name and is characterized by data properties. "Data property" allows to represent
the relationship that connects the concept to a data type (integer, boolean, etc.). It is equivalent to an attribute
of classe. Relationship between concepts, called "Object property", reflects the interaction between concepts,
it has a name and connects a source concept called "Domain" to a target concept called "Range".
"Subsumption relations”, links a specific class to a more generally class.

4.2 Comparison Approach

Our goal is to provide a semantic comparison approach integrating syntactic and structural aspects as well
(Figure 1). We propose a system called C®Ndel (Complete Comparison of Models) that takes two
models as input and gives correspondence models as output’NG@B! is syntactic, semantic and
structural rules-based. It detects mappings between models elements. We used strategies based on semantic
properties to take into account the semantic aspect. Therefore, our system refers to a domain ontology that
will enable to provide semantic relevant information and decision-making during the comparison. Our system
is also based on other resources to complete syntactic comparison. We use a multilingual dictionary
(translation) as EuroWordNetan acronym dictionafy an abbreviation dictionatyand a dictionary of
synonyms as WordN&tIn our approach, we consider that we have at our disposal the domain ontology and
the other resources. We provide a system for decision support. Our system allows the user to validate or
delete mappings automatically created.

L www.omg.org

2 http://www.illc.uva.nl/EuroWordNet/

3 http://acronymes.info/

4 http://theleme.enc.sorbonne.fr/dico.php
® http://wordnet.princeton.edu/

37

ISBN: 978-972-8939-30-4 © 20010 IADIS

Rules
Structural

- Semantic - Mepping
o -

T
Reoires

=

Figure 1. COMModels architecture

Our comparison process starts with the the comparison of syntactical and semantical elements (first
classes, second attributes, third operations and fourth relations). It next compares elements (in the same order
as just described) in global structures and in local structures.

4.3 Comparison Rules

We provided a first version of rules comparison in informal (natural) language in (Benabdellah et al., 10a)
and an improved version applied to a case study in (Benabdellah et al., 10b). To specify the language for
expressing these rules, we propose a meta-model.

43.1MDE

Model-driven engineeringl (MDE) is a software development approach that has the potential to address the
identified challenges of software engineering. It offers an environment that ensures the systematic and
disciplined use of models throughout the development process of software systems. The essential idea of
MDE is to shift the attention form program code to models. This way models become the primary
development artifacts that are used in a formal and precise way.

The MDE approach identifies tools and materials necessary for the implementation of its paradigm. We
find among others model, metamodel, language.

The most comprehensive definition of model is given by (Bézivin et al., 0Inddel is a simplification
of a system built with an intended goal in mind. The model should be able to answer questions in place of the
actual system." According to (MOF, 02), 'tAetamodel is a model that defines thanguage for expressing
amodel".

In our case, the model is the comparison rules. We define a metamodel that defines the language for
expressing these rules.

4.3.2 Rules Metamodel

Call

Rules Farametars 1.7 Belong Set of elements

- Name : String - MName : String
- Result :Baolean
- Commutative @ Boolean

AN

Syntactic Semantic Structural

IR

Zlabal Local

¢

1= |- Hame :Sting

Figure 2. Comparison rules metamodel

38

IADIS International Conference Applied Computing 2010

We modeled our metamodel in UML language. The rule is characterized by a name, a boolean result (i.e. true
or false) and the type (commutative or not). The rule can be syntactic, semantic, global structure or local
structure. It is composed of parameters that have a name. These parameters belong to a set of elements. A
rule can call one or more other rules.

4.3.3 Comparison Rules Examples

We first established the syntactic comparison rules: rule of identity, rule of inclusion, rule of equivalence
multilingual, rule of acronym, rule of abbreviation and rule of syntactic equivalence. Then the comparison
semantic rules : rule of synonymy of classes, rule of equivalence of classes (as an ontology), rule of semantic
equivalence of classes, rule of hyponymy of classes, rule of synonymy of attributes, rule of disjunction of
attributes, rule of semantic equivalence of attributes, rule of operations synonymy, rule of semantic
equivalence of operations, rule of synonymy of relations, rule of inverse relation , rule of equivalence of
relations (as an ontology), and rule of semantic equivalence of relations. Then the rules for comparing global
structure elements (classes, attributes, operations, relations and generalization relation). And finally, rules for
comparing local structure elements (classes, attributes, operations and relations).

Some representative rules in accordance to the comparison rules metamodel are described below.

- Ruleof syntacticinclusion of two elements elt; and elt;

This is a syntactic rule, called “Syntactic_inclusion”, compares two elements (parameters) galied D
and Deelt. The first element belongs to the set of elements of the first diagram caliednd the second
element belongs to the set of elements of the second diagram calted’ lils commutative rule returns 1
(true) if the first elements are included syntactically in the second, and else returns 0 (false).

Syntactic_inclusion : D4Ex D:E~2 {0.1}
Syntactic_inclusion(Dyelt;, D.elt) =
i1, if 2p.s € §| Dyelt; name = p + D, elt. name + so0u D, elt. name = p + Dy elt, nama + 5
] elze

Rule explanation: A first element is syntactically included in a second element if the name of the first

element appended to a prefix and (or) a suffix gives the name of the second element.
Rule of semantic equivalence of two relations R; and R;

This is a semantic rule, called “Equivalence_semantic_relations”, compares two elements (parameters)
called DR; and DR;. The first element belongs to the set of relations of the first diagram caledrd the
second element belongs to the set of relations of the second diagram c&lethiz rule called other rules
called “Synonymy_elements”, “Inverse_relations” and Equivalence_Ontologie_relations”. This commutative
rule returns 1 (true) if the two elements are semantically equivalent, and else returns 0 (false).

Equivalence semantic_relations: IyEx LR - 0,1
Eqguivalence semantic_relationsiDyR;.D;R.) =
1.zi Synonymy_elements(D,R;.D.R.] =1 or Inverse_relations(DyR;.D;:R.1=1
or Eguivalence Omologie relations{ILE;, D;R) =1
o, elze

Rule explanation: Two relations are semantically equivalent if they are equivalent (in reference to
ontology) or reverse.

Rule for comparing global structure of two relations R; and R;

This is a global structural rule, called “Equivalence_structure_global_relations”, compares two elements
(parameters) calledB; and QR,. The first element belongs to the set of relations of the first diagram called
D;R and the second element belongs to the set of relations of the second diagram,BallEudxule calls
other rules. This commutative rule returns 1 (true) if the two elements are equivalent in global structure, and
else returns 0 (false).

39

ISBN: 978-972-8939-30-4 © 20010 IADIS

Equivalence structure global relations DiRx DZR - fo,1}

Equivalence_structure_global_relations(IyR;.D;R;) =

f 1,if [(2DyC, D4C, £ DyC, 2 0,6, D, C, € 0, C | DyR;(D4Cy, D4C et DGR, (D0, D, C00
and (Eguivalence_semantic_classes(DyC,, D; C;) = 1 o+ Equivalence_syntactic_elements(D,C.. D; C)7]
and (Equivalence semantic classes(DyC,_. D, C) =1 or Equivalence syntactic_elements{DyC_. D, C_)1]]
Or [2 Dy4C,. DyC,, Dy C, Dy C, 3 0,6, B, C, € D0, 204G, € DyG| DyR;(D4C.0,C), D;R; (0,0, D €,) and
Dy G,.super class = D4 C_ et Dy G,.sub_class = D, Cy and (Equivalence_semantic_classes(DyC, D; C) =1
ou Equivalence syntactic_elements(D,C,, D, C;)}] and [(Eguivalence semantic_classes{4C_ D, C 1 =1

or Equivalence symtactic_elements(D,C._. D, C))]
L o, elze

Rule explanation: Two relations R, and BR; are equivalent in global structure if: [There is two classes
D,Cy and DCy, such as ER; links it and there is two classes@, D,C, such as ER; links them and BC,
and D,C, are syntactically or semantically equivalent] Or [There is two clasggsdhd DC,, and there is
D,C, class such as 10, is the super class of,D, and QOR; links D,C, and DC,, and there is two classes
D.Ci, D,C, such as ER; links them and BCy and DC, are syntactically or semantically equivalent and
D,C,, and BC, are syntactically or semantically equivalent]

Rule for comparing local structure of two classes C; and C;

This is a local structural rule, called “Equivalence_structure local_classes”, compares two elements
(parameters) called 0; and BC;. The first element belongs to the set of classes of the first diagram called
D,T and the second element belongs to the set of classes of the second diagramyEallénisDule calls
other rules. This commutative rule returns 1 (true) if the two elements are equivalent in local structure, and
else returns 0 (false).

Equivalence strocture local_elasses: ICx D,C = 0,17
Equivalence_structure_local_classes(DyC;, D,C;)
1.if (¥DyC T, € D4C, T30, G Ty € D,C, T| Equivalence_ semantic_attributes(DyC; T, DG, T) =1
or Equivalence_syntactic_elements(D,C; T, D, C;T)) and (¥D,C; T, € D,C; T.304C; Ty, € Dy C; T
Equivalence_semantic_attributes(D,C; T, D;C; T) = 1 or Equivalence_syntactic_elements(D,C; T, D;C; T;))
= and (¥D,C; 0F, € D4C; 0P, 3 D,C; OF, £ D,C; OF| Equivalence_semantic_attributes(D,C; OF, D,C,0F) =1
or Equivalence_syntactic_elements(D,C; 0P, D;C;0F)) and (¥D,C;0F €D,C;0F,3D4C;0F, € D,C; 0P|
Equivalence_semantic_attributes(D,C; OF, D,C; OF)) = 1or Equivalence_syntactic_elements{D,C; OF,, D,C; 0F))
o, elze

Rule explanation: Two classes are equivalent in local structure if their attributes and operations are
syntactically or semantically equivalent.

5. CONCLUSION

Any approach to model comparison must take into account syntactic, semantic and structural aspects. The
semantic integration of models is a complex task because it requires understanding the semantics of linking
concepts. The main contribution of this paper is to compare syntactic, semantic and structural aspects of two
models. The development of our application is done in Java because this language allows the use of several
APIs for manipulating OWL ontologies as Jena (http://jena.sourceforge.net/) and Sesame
(http://jena.sourceforge.net/). Other resources (dictionaries) are managed in tables. We are currently
achieving an interactive user interface of our system. In fact, the user validates or delete mappings created.
Validated correspondences will be stored in a MySQL database. The integration can be applied to "n" models
M;={Mi| i=1..n}. In this case, we can integrate; Mnd M, then integrate their result model WjRand M,

etc.., until the M, model. Our research will be a further study on the definition of rules of integration and
merger, which will thus enable to realize the whole process of model integration.

40

IADIS International Conference Applied Computing 2010

REFERENCES

Anwar, A., Ebersold, S., Coulette, B., Nassar, M. and Kriouile, A., dec 2007. Vers une approche a base de regles pour la
composition de modeles. Application au profil VUML,” L'Objet, Hermés Science Publications, Numéro spécial
Ingénierie Dirigée par les Modeles, Vol. 13, N. 4/2007, p. 73-103

Batini, C. Lenzerini, M. Navathe, S.B, dec 1986. A Comparative Analysis of Methodologies for Database Schema
Integration. ACM Computing Surveys, 18(4):323-364.

Benabdellah, C. S. and Fredj, M. 2010.Vers une contribution a l'intégration sémantique des modéles UML. ERATSI,
INFORSID, France (Benabdellah and al., 2010b)

Benabdellah, C. S., Fredj, M., Mouline, S., 2010. Un systéme a base de regles d'aide a la décision pour la comparaison
sémantique des modeles”, SITA’2010, Rabat (Benabdellah and al., 2010a)

Bézivin, J., Gerbé, O. Nov 2001. Towards a Precise Definition of the OMG/MDA Framework. ASE'01

Boronat, A., Carsi, J.A., Ramos, |. and Letelier, P., 2007. Formal Model Merging Applied to Class Diagram Integration.
Electronic Notes in Theoretical Computer Science (ENTCS).

Bouras, A., Gouvas, P. and Mentzas, G. 2007. ENIO: An Enterprise Application Integration Ontology. 18th International
Workshop on Database and Expert Systems Applications.

Dorion, E. and Fortin, S. 2007. Semantic Interoperability: Revisiting the Theory of Signs and Ontology Alignment
Principles. 12th International Command and Control Research and Technology Symposium “Adapting C2 to the 21st
Century”.

Falquet, G., Jiang, C. M. and Ziswiler, J. 2004. Intégration d’ontologies pour l'acceés a une bibliotheque d'hyperlivres
virtuels. Actes du 14éme Congres Francophone de Reconnaissance des Formes et Intelligence Atrtificielle
(RFIA2004), Toulouse, France.

Ferut, T., June 2006. Définition d'un mécanisme de composition appliqué aux modéeles métiers, Stage du Master PLMT,
Laboratoire 13S, équipe OCL.

Fleurey, F., Baudry, B., France R. and Ghosh, S. 2007. A Generic Approach For Model Composition” Proceedings of the
Aspect Oriented Modeling. Workshop at Models 2007, Nashville USA.

Gruber, R.T. 1995. Towards Principles for the Design of Ontologies Used for Knowledge Sharing, International Journal
of Human Computer Studies, Vol. 43, (No 5/6), pp. 907-928.

Gruber, T., 1993. A Translation Approach to Portable Ontology Specifications, Knwledge Acquisition, Vol. 5 (No. 2) pp.
199-220.

Haddar, N., Gargouri, F. and Ben Hamadou, A., 2002. Une approche formelle pour l'intégration des aspects structuraux et
comportementaux de représentations conceptuelles ISDM Journal, N°19.

Lahire, P. and Quintian, L., 2006. New perspective to improve reusability in object oriented languages. Journal Of
Object Technology (JOT), 5(1) pp- 117_138.

M. K. Smith, C. Welty and D. L. McGuinness, OWL Web Ontology Language - Guide,
http://www.w3.0rg/TR/2004/REC-owl-guide-20040210/

Manning, C. and Schutze, H., 1999. Foundations of Statistical Natural Language Processing, ISBN 978-0262133609,
MIT Press.

MOF OMG, April 2002. Meta Object Facility (MOF) Specification. Version 1.4.

Navathe, S. B., Elmasri, R. and Larson, J., 1986. Integrating user views in database design, IEEE Computer 19, (Jan.),
pp. 50-62.

Oliveira, K. et Breitman, K., 2009. A Flexible Strategy-Based Model Comparison Approach: Bridging the Syntactic and
Semantic Gap. Journal of Universal Computer Science, vol. 15, no. 1.

Olivier, B., Philippe, L., Alexis, M., Noél, P., and Gilles, V.. 2007. Evaluation de I'apport des aspects, des sujets et des
vues pour la composition et la réutilisation des modéles”, Revue RSTI-L'Objet, 13 (2-3), pp. 177-212.

OMG Unified Modeling Language (OMG UML), 2007. Infrastructure, Version 2.2, OMG Document Number:
formal/2009-02-04 Standard document.

Ontology Definition Metamodel, September 2008, OMG Adopted Specification, OMG Document Number: ptc/2008-09-
07, http://www.omg.org/docs/ptc/08-09-07.pdf

Quagne, D., Le Bozec, C., Zapletal, E., Thieu, M. and Jaulent, M. 2005. Intégration de multiples ontologies en
pathologie mammaire. Journées Francophones d’Informatique Médicale, Lille.

Quintian, L. , 2004. JAdaptor : Un modele pour améliorer la réutilisation des préoccupations dans le paradigme objet,
Thése de doctorat, Université de Nice-Sophia Antipolis, France.

Rachel, A. Pottinger and Philip, A. Bernstein. 2003. Merging Models Based on Given Correspondences. Technical
Report UW-CSE-03-02-03, University of Washington.

41

ISBN: 978-972-8939-30-4 © 20010 IADIS

Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J. M., McEachen, N., Song, E. and Georg, E. 2006.
Directives for Composing Aspect-Oriented Design Class Models, T. Aspect-Oriented Software Development, pp.75-
105.

Rubin, J., Chechik, M. and Easterbrook, S. M. 2008. Declarative approach for model composition. Proceedings of the
2008 international workshop on Models in software engineering, May 10-11, Leipzig, Allemagne.

Spaccapietra, S., Parent, C. and Dupont, Y., April 1994. View Integration : a step forward in solving structural conflicts.
IEEE Transactions on Data and Knowledge Engineering, vol. 6, no.2.

Uhrig, S., 2008. Matching Class Diagrams: With Estimated Costs Towards The Exact Solution?, Workshop on
Comparison and Versioning of software Models, ACM.

Weston, R. H., 1993. "Steps towards enterprise wide integration: a definition of needs and first generation open
solutions". International Journal of Production Research, 31(9), 2235-2254.

Zweigenbaum, P. 1994. MENELAS : An Access System for Medical recods Using Natural Lnguage, Computer Methods
and Programs in Biomedecine, Vol. 45, pp. 117-120.

42

IADIS International Conference Applied Computing 2010

ADAPTIVE PRE-PROCESSING OF LARGE POINT
CLOUDSFROM OPTICAL 3D SCANNERS

Erik Trostmann, Christian Teutsch ¢ Dirk Berndt
Fraunhoferinstitute for Factory Operation and Automation (|
Sandtorstrasse 22,-39106 Magdeburg, Germany

ABSTRACT

Optical 3d scanners have a wide distribution in industrial applications, mainly to digitize object surfaces in

measure and compare geometric properties. But the generated 3d data is farng optimal. They contain nois
outliers and artifacts which requires a-processing step. We present a set of fast and adaptive methods for &
cloud optimization which are suitable for industrial measuring tasks. We discuss appropriate dures and efficient
algorithms for nearest neighbor queries in large point clouds as well as curvature based simplification and
approaches.

KEYWORDS

3d-scanner, point cloud optimization, simplification, smoot

1. INTRODUCTION

In contrast to digitageometric modeling, the data obtained from optical 3D sca usually contain several
errors caused by system and measuring principle specific characteristics. Addi the data is affected by
environmental influences such as unfavorable ligl conditions, dust or vibrations. Measurements on
generated data may lead to incor results.Instead of applying mesh optimizations we prefer t-process
the scan data before a mesh is construTherefore, procedures for the point cloud optinion, evaluation
and inspection are needed that are robust agcexternal influences. While a smooth & aesthetic
visualization is desired for most computer graphic applicaticour application field isindustrial
measurements, whigirimary require fet and automated procedures with a high reliab

When analyzing 3D scan data usually very large data sets with millions of points have to be pr
Additionally, due to overlaying scans, redundant information with different quality is generat Figure
1). Many applications do not require such a high point density, and additionally, the computation tim
data analyses is often limited in practice (cycle times). Therefore, it is necessary to optimize the
minimize the number of points while minimizing the loss of information at the same time. The base
efficient data processing are data structures which support the efficient retrieval of neighborhood infi
from the point set. Thus, local neigirhood information must be reconstructed from the basic 3D
coordinates.

Figure 1 Meshed point cloud of an iron casi before and after having performed the preeessing ste|. The colors
show the deviations to the original data set. They also indicate the positions were the proposecare particularly
suitable for, that is, edges and small details.

43

ISBN: 978-972-8939-30-4 © 20010 IADIS

We discuss approaches to derive local point information from different scans and scanners. This includes
tree-based data structures as well as point cloud simplification, smoothing and nearest neighbor problems.
The following criteria are fulfilled by our methods. They are fast to utilize them for production. They are
stable, which means reliable and very insensitive against noise, outliers, uneven sampling and artifacts. In
particular, they are as adaptive as possible to reduce the numbers of thresholds, because thresholds tend to
perform well only on the test samples from which they were derived. We mainly derive our scan data sets
from light-section devices (e.qg. fringe/laser line projection) but also from laser scanners as used for digitizing
buildings.

A polygonal mesh representation mostly conceals holes and imperfect point data because it aims to
produce an esthetic nice looking model (Gois et al. (2007)). But we are particularly interested in those
uncertainties to evaluate the acquisition quality of the scanner and to locate deviations for measuring tasks.
Furthermore, direct point cloud processing avoids the time-consuming meshing operations for large data sets,
assumed that a mesh is not needed at the end, which is usually the case for measurements. But nevertheless,
in this work we also employ meshes afterwards to illustrate the effect of our methods.

We also discuss approaches how existing algorithms benefit from system internals which are provided by
optical 3D scanners and the underlying measuring principles, respectively.

2. POINT CLOUD ANALYSIS

Having large sets of 3D data one usually needs to know more about its spatial structure in order to perform
specific operations. The most important information is about the local neighborhood which must be
reconstructed from the given data.

First of all, the set of 3D coordinates must be organized and structured in order to analyze local
neighborhoods between multiple scanlines and scans from different sensors, etc. Therefore, a data structure is
needed, which allows to efficiently search for points within the entire point cloud. There are different
algorithms available for the structuring of 3D points, based on tree and graph representations or on the
clustering of data like in Park et al. (2006). One of the most important applications is the reconstruction of
local neighborhoods. For example, finding the nearest or the m-nearest points to a given point is a typical
task. So we first take a look on existing methods and then choose the most appropriate.

2.1 3D Data Organization and Representation

An intuitive method for structuring 3D data is partitioning, where points are assigned to a unique cluster. A
popular data structure is provided by octrees, which hierarchical stores nearby points in identical cells (e.qg.
cubes). Mainly computer graphics applications utilize this data structure, which supports the implementation
of efficient divide-and-conquer strategies like Chen (2006). For spatial nearest neighbor queries of large
point clouds a more suitable structure is found by kd-trees. They are a special case of binary space
partitioning (BSP) trees, whereas a point set is subdivided into axis-aligned non-intersecting cuboidal
regions. The splitting plane in each recurrence is defined by the median value of the current ordinates.

To find the median of a set of values, one may proceed by sorting and selecting the central value in the
array. Since sorting yields much more information than just the median, this procedure is wasteful. The
fastest method for finding the median is partitioning, exactly as it was done in the quicksort algorithm.
Therefore we use an algorithm for finding the m-largest element (m is the medial position) as presented by
Press et al (2007). It is an in place method, that avoids data copying and thus saves time and memory. The
operation count scales @¢n) rather tharD(nlogn) for a complete sorting.

Because the three-dimensional kd-tree for a setpdints is a binary tree with leafs, it only use®(n)
storage and the construction timeOig:logn). The query algorithm only visits those nodes whose regions
are properly intersected by the query range. The query time is bounda®y'/* + p,), wherep, is the
number of points reported.

In practice there are two degenerate cases we must take care of. The first is the presence of identical
ordinates for which no unique median position exists. A solution is given by lexicographic ordering using the
values of the other ordinates. The second case is the presence of (at least two) identical points which cannot
be solved even by lexicographic ordering. One of two equal points will be falsely inserted at a tree position

44

IADIS International Conference Applied Computing 2010

where it cannot be found. But fortunately this has no serious impact on the nearest neighbor searches since
the other point, which is the same, will be found anyway.

2.2 Nearest Neighbor Queriesand the Optimal Neighbor hood

To analyze the local neighborhood of a given point, nearby points in a spherical neighborhood are searched.
The densityp is derived from the radiug of the neighborhood, and the number of points ingige
Assuming a locally planar surface the density is computeg by N,,/(mr?). For the examined objects, the

local point density does not vary significantly. Thus, the computation performance can be increased by
estimating the globally best radius as the median radius derived from only 1% of all points, provided that at
least 20 points are covered.

There are two factors that mainly describe a neighborhood for further algorithms: the number of points
and the quality of the local representation. Local analyses typically require a certain number of pwints
estimate local shape functions (e.qg. fitting geometries) depending on the number of unknown parameters. But
the number of neighboring points is not necessarily a sufficient criterion, if the considered region is too small
or too large and does not represent the surface part. Especially in scanned point clouds with noise and uneven
sampling densities, the point number fluctuates locally. Therefore, the point number needs to be coupled to a
neighborhood radius, which should be chosen adaptively. The radius range should be defined by the data
density and expected sizes of the minimal and maximal features that should be analyzed.

To estimate surface normals, a plane is usually fitted to neighboring points. Therefore, Mitra et al. (2004)
proposed an adaptive method to compute the optimal radius with respect to the amount of points and their
distribution. Assuming a Gaussian distribution where noise has zero mean and standard dgyitien
minimize a bound for the estimated angle between the normal vectors of the fitted plane and the true surface
with a probability of(1 — €). The optimal radius is obtained by:

1
(1 Op 2>3
r=|—(;—++ cyo0;
(K(1\/5 2%n (1)

wherep is the local sampling density,is the local curvature, ang andc, are constants. The algorithm
takesa,, as input and iteratively evaluatesin the first iteratiorp andk are evaluated based on empirically
chosenk (= 15) nearest neighbors and then the radiissobtained from Eq. (1).

Another approach is discussed by Ohtake (2003) and Nagai (2009). They locally fit 3D quadrics and
bivariate quadratic functions, which exhibit more degrees of freedom and are more suitable to represent
curved surface parts. Their optimal radius adaptively increased until sufficiektneighbors are found to
solve the surface equations.

For the used 3D scanners, there is some a priori information that can be used to adaptively determine a
minimum radius. The movement and displacement between two successive scanlines are known system
parameters, which typically range betweéeh and0.5 mm for the examined models. Thus, in any case, the
minimum radiusr,,;;, must at least be larger than the distance between two scafdin&arting from a
given point on a scanline, a cubic region can be defined, which touches the neighboring scanlines. Then, the
circumsphere of this region contains a sufficient number of points from the neighboring scanlines. Thus, the
minimum radius,,,;,, of this circumsphere is defined by:

Toin = V245 + ¢ (2)

with the constant to compensate uncertainties (usually 0.1 mm). For the flexible laser scanner, the
point density is usually higher and the scanlines are oriented in an arbitrary manner. In thig;gase,
adaptively increased until at least 20 points are covered. The starting value must be defined by a value larger
than the uncertainty of the scanner, which is also0.1 mm.

2.3 Outlier Detection

Outliers are found by coordinates in a low density environment where only a few neighbors are present in a
certain distance. It mostly depends on the application which density signals outlier. We propose an adaptive

45

ISBN: 978-972-8939-30-4 © 20010 IADIS

procedure that computes for each point the distance to the nearest neighbor and keeps all points with
distances smaller than two times the standard deviation, which is (statistically) about 95%. This procedure
works well in practice but an optimization is still possible. In addition to the global one Kriegel et.al (2009)
obtain an local outlier score regarded to the local densities only that enables a more subtle decision if a point
distance signals an outlier or not.

2.4 Surface Nor mal Estimation

The local orientation of the surface is described by its normal vectors. Since the surface function is unknown
in most cases, it must be approximated. Besides polygonal meshing, from which this information can directly
be derived, geometry approximation techniques are usually employed. For example Ohtake (2003) locally
fits 3D quadrics and bivariate quadratic functions to determine the surface normal vector.

Dey (2005) compared the different methods and found out that Delaunay triangulation is the most robust
but also the significant slowest.

For the scan data in this work a plane fitting is performed, since this method is fast and robust and the
point sets are dense. The plane fitting procedure is then based on a least-squares orthogonal distance fitting
(ODF) as proposed by Ahn (2004). Therefore we compute the central moments tensor of the point set as the
symmetric square matrid with the mean value&,, Yy, Z,) by:

M M x; = X; —mXo yi =Y —mYo 2 =Z; —mZo
welue o we) Ma=) x My=) g Me=) o 2
M, My, M, M,, = Zm Xy, My, = Zm Yizi My = Zm ZiX; 3)
i=1 i=1 i=1
The matrixM is then decomposed by using the singular value decomposition (SVD) of matrices.
M=V,Ww,V 4

As a result, the diagonal matri§,, contains the principle central moments, and the orthogonal matrix
V, contains the principle axes of central moments. The fitting plane is finally defined by the mas& center
and the principle axiw,;; with the corresponding smallest moman;.

Pauly (2003) observed that the geometry fitting should respect the nearby points more than the distant
points. Hence, we weight neighboring points based on their distangds/tosing a Gaussian function.

The orientation of the estimated normals from the plane fitting depends on the position of the plane within
the coordinate system. For the analysis and for an esthetic visualization a consistent orientation is necessary.
By exploiting given scanline information of the camera or the laser position, the normal vector orientation
problem becomes trivial. An approximated normafor a pointp only needs to be flipped, if it points

contrary to the camera or laser positipp/p;), specifically:
i DPc—DP

n=-nif n-——<0.
N Ty)

2.5 Graph Representationsfor Unstructured Point Sets

Without additional information a data structure is necessary that encodes the neighborhood of the points and
that ensures a consistent orientation of their normal vectors. Therefore, we construct an Euclidean Minimum
Spanning Tree (EMST) for the entire point BetAn edgeE (i,) is added to the tree if eithef is in the
neighborhood of somg; or vice versa. Specifically, the Euclidean minimum spanning tree of the pomt set

is the maximal tre&MST(P) = (P,E) such thatE € P x P and the sum of all edge lengths(ey) is
minimum, wherel(e,) = |pi —pjl. Finally, each point has a path to its nearest neighbor and the graph
encodes the geometric proximity in the Euclidean noriR3ir{also called a Riemannian Graph). For a more
detailed discussion on nearest neighborhood graphs the reader is referred to Attene et al. (2000).

46

IADIS International Conference Applied Computing 2010

3. POINT CLOUD OPTIMIZATION

Repeated scans in the same area of an object’s surface and the choice of the sensor alignment can cause
overlaying point clouds. The introduced redundancy can be helpful to locally optimize the point cloud on the
one hand. But on the other hand, a large amount of points significantly reduces the processing speed of
further algorithms. This section discusses suitable methods to process the redundant information in order to
optimize and simplify a point cloud with respect to quality and curvature information as derived in the
chapters before.

3.1 Adaptive Smoothing

As discussed in the data acquisition section, rough and specular surfaces can cause high-frequent noise for
optical sensors. Furthermore, the local point distribution variates depending on the shape and the distance to
the sensors. By applying smoothing algorithms, this variance can be reduced. Overlaying scans can also
produce errors which origin from an imprecise calibration of the sensors to the axes movements. For an
aesthetic visualization and for more robust post-processing algorithms, a smoothing procedure must be
employed. When smoothing noisy data, edges should be preserved and the quality of a point, regarding to its
viewing conditions, should have a notable influence on the resulting point. The smoothing procedure locally
operates in a neighborhood defined by kipearest neighbors (typically = 20) and the minimal radius

Tmin,» depending on the scanline distardceas proposed in the section before. As long as the number of
points in the neighborhood is smaller tharthe search radiusis increased, starting from,;,,. A smoothed

point is derived from all of its neighbors by applying a weighting function that depends on the distance of the
neighbor to the considered poift and a weighty;, regarding the scanline curvatuwgand quality of the

viewing conditionsy; (see Figure 2 (a)). Since a low quality can cause noise and thus a higher curvature, the
weightw; is defined as the normalized sum of these measures by:

wi=1-ak+a(l-g) with 0<a<], (6)

where a allows to manipulate the ratio between the influence of the viewing quality (viewing and
projection angles) and the edge values (typicalky 0.5). k; and g; are the normalized values of andgq;
with:

Ki

= ql _. ? |f Kl < T,
1 otherwise. (7)

This normalization is based on the following observation: Since the viewing ggaigydefined by the
viewing angle, its range is limited between 0 andrhe scaler defines the curvature value, that indicates
significant edges. It is an empirical measure, and for the scanline curvature baSestder NURBS curves
it was found out that = 0.2 gives optimal results (Teutsch et al. (2007)).

After having defined a weight for each neighbor, an influence fundtiam added. Since the number of
points within the bounding sphere of the neighborhood nonlinearly increases with the-radeishfluence
function should penalize points near the edge of neighborhood more than nearby points. Based on the
function @, its neighbor®; and their weightv;, the resulting smoothed point is computed by:

1

Ds =

wsum

n n
z pi(i)i(b(al’), with Wsym = Z (A)lcb(al) y
- = (8)

where the measui® is the adaptively normalized distand¢geto the neighbop;. Since the maximum faf;
is limited by the radius of the neighborhoodi; is defined as:

i

d, = — with d; = |p; — pl 9

47

ISBN: 978-972-8939-30-4 © 20010 IADIS

0 X
(c)

Figure 2. Original point cloud (a), lllustration of the weights for single points based on their scanline cugvaaréhe
valuegq; for the viewing angle (b). The smoothing effect at the edges (dark) is lower than in planar areas. The paths of
two influence function® are shown in (c). The empirically chosen parameters guarantee an influence between 10-20%
at the edge of the neighborhood (x=1).

—Y

Together with the average function, two different nonlinear influence functigremd®, were applied
in order to attain the desired result. The functions and their paths are illustrated in Figure 2(c). A radius of
r=1mm was chosen.

In summary the curvature and quality-based weighting with an influence function performed well and
exhibited a significant improvement compared to the simple average, since edges are retained while more
planar regions are smoothed. Due to its strong slope, the exponential fubg}iopérates more locally, and
thus gives more influence to nearby points than the cubic funebign (

In order to control the smoothing, a test function is additionally applied, which checks if the distance of a
smoothed pointp; to its originalp exceeds a tolerance The value oft depends on the measuring
uncertainty or the accepted inaccuracy (&.¢::0.1):

ps—D
llps — oIl (10)

Without having scanline curvature, Lange et al. (2005) propose a method for point cloud fairing using an
anisotropic geometric mean curvature flow. Their method solves a parabolic PDE with boundary constraints
to obtain an anisotropic Laplacian operator. Unfortunately, this approach requires many iterations and a user-
defined parameter called edge quotient that enables to emphasize corners. Furthermore, based on the given
normal vectors of a point cloud, Nielson (2004) achieves a smoothing by generating an implicit volume
model whose zero level isosurface interpolates the given points and associated normal vectors.

ps=p+t

(a) Average (b) ®; =1—0.8x° () ®, = e

Figure 3. Triangulated models to visualize the effect of smoothing a point cloud in different stages. The smoothed
representation of the original noise point cloud based on an average filtering (a). The better results by applying the
influence functionsb; from Figure 2(b) are shown in (b) and (c).

In addition to point cloud smoothing, there are also many smoothing algorithms for polygonal meshes.
These methods benefit from the known local edge connections, e.g. to relax the polygons as discussed by
Bade et al. (2007). Furthermore, Nealen et al. (2006) introduce a framework for triangle shape optimization
and feature preserving smoothing of triangular meshes that is guided by the uniformly weighted Laplacian
and the discrete mean curvature normal. A comparative overview on polygonal mesh smoothing is given by
Bade et al. (2006).

48

IADIS International Conference Applied Computing 2010

3.2 Adaptive Correction

The quality of laser scanned 3D point clouds is mainly determined by the direction of projection and the
viewing direction of the camera onto the object’s surface. This fact can be exploited in order to adaptively
remove redundant information. After registering the point clouds from different scan operations and sensors,
the same small neighborhood regitinoften has been multiply sampled and contains sample points in
different quality (see Figure 4). Points of lower quality downgrade the influence of points with high quality
when applying neighborhood-based operations to these regions. Therefore, low quality points should be
removed from the merged point set.

To minimize the number of points that are removed, the minimal neighborhood rgdjushould be
selected for merging. Useful definitions fey,;,,are either based on the distance between points or two
scanlinesA; (Eq. (2)) or the expected uncertainty of the 3D scanperFor the analyzed point sets, is
larger than the measuring uncertainty in most cases, which causes relatively large neighborhood, and thus the
removal of too many points. The uncertainty (0.1mm) is more suitable for this purpose, but may be too small
if Ag is large. A further adaptive measure is given by determining the typical (average) distance of two points
on the considered scanlidg. Since the directions of all three measures are different, they are interpreted as

avector whose length is the radiysfor the neighborhood in which the correction is performed.

’ A3

For the normalized quality valuegs of all pointsp; in the resulting neighborhodv(r,), the averagen,
is computed. This value serves as a threshold which defines that p;[@oint(r;) should be removed, if its
quality is lower than the threshoid,. Specifically:

As a result, the redundancy from the regidhgs avoided by removing low quality points (see Figure
4(c)). For the flexible laser without constant distances between the scayliseset to zero.

It was also noticed that an adaptive correction for points with low quality on the basis of neighboring
high-quality points by weighting is not reasonable. On the one hand, the uneven sampling would still remain
and on the other, the necessary low weight for the considered point causes only a weighted interpolation and
smoothing between the neighbors with negligible influence of the point itself.

() (b)

Figure 4. Quality-based merging of redundant surface parts from different scan operations and sensors. The data sets
obtained from the lower and upper sensor with their corresponding viewing quality are given in (a) and (b). The merged
result is shown in (c).

3.3 Adaptive Simplification

Multiple scanning of the object’s surface is often necessary to assure the capturing of all interesting surface
parts. This often results in very large point clouds, with no significant increase of information due to a higher
density at overlaying regions. After having merged overlaying points, the point density usually is still very
high. In order to increase the computation performance of the following algorithms, a point-based
simplification is applied. Usually, there is a differentiation between uniform and adaptive non-uniform
procedures. To ensure a constant, uniform distahcebetween neighboring points, all points in the
neighborhood of a point with r = d,, are removed (see Figure 5 (a)). The advantage of this approach is the

49

ISBN: 978-972-8939-30-4 © 20010 IADIS

high computation speed, but its disadvantage is that it does not regard local surface properties. But especially
this adaptivity allows to remove more points in planar regions, than at edges and in curved regions.

For visualization purposes, Pauly et al. (2002) presented an iterative method. They compute the local
surface variation obtained from a covariance analysis ok thearest neighbors. From the eigenvalligs
derived from the eigenvectors of the covariance matrix, they determine the corresponding normal vectors and
achieve a consistent orientation with the procedure described in Section 3.4. The surface waftatian
pointp is then defined by, as the deviation from the plane, spanned by the mass center of the neighborhood
(with sizen) and the normal vector.

Ao
lo+ A+ 1, (12)

For example, a zero deviatiop (p) indicates that all points in the neighborhoocbdie in a plane, and if
all eigenvalues have the same length, a,€p) = 1/3, a completely isotropically point distribution can be
assumed. Points that cause the smallest error, are removed from the set by an edge collapse operation in an
iterative manner. When using point cloud simplification as preprocessing for surface measurements, the input
is a desired distance valdg between two neighboring points that is only allowed to decrease in strongly
curved regions and at edges (see). The necessary local surface properties for the adaptivity of the approach is
then given by the curvature measukgghat have been efficiently derived from the scanline analysis (see
Figure 5(b)). Therefore, for each pojnbf the point seP all neighbors in the neighborhodg are identified
with the help of the kd-tree. For eaggh its valuek; from equation (7) is used to determine the linear sgale
that describes how much points must remain in the neighborhgpdwifiereay; itself is never removed:

On (P) =

Sy = Np (dg) - K; (13)

If s, is always set to zero, all points except are removed and the procedure equals a uniform
simplification. Otherwise, points with low quality; are removed first. To ensure that edge points are not
removed by processing planar neighborhoods, the procedure is applied to the edge points first. This is
achieved by dividing the point set into two subsets containing significant edge points on the one hand, and all
remaining points on the other hand. The computation performance is increased, since points are not deleted
from the kd-tree but labeled as removed (also see DeCoro (2007)). Although the tree becomes unbalanced,
the whole procedure is much faster than re-balancing the tree by removing a point. At the end of the
procedure, the tree is simply restored by unlabeling the knots.

@) (b) (©

Figure 5. Point cloud simplification with r = 0.5. The result of the uniform simplification is shown in (a), the scanline
curvature (b) is used for an adaptive simplification (c). For a better visualization, illustration (c) shows the resulting
density in gray levels instead of single points.

4. CASE STUDIES

The proposed methods were applied to different models in order to evaluate their effectiveness. Figure 6
illustrates the models and the processing pipeline. The polygonal approximation of the initial point sets in the
first column shows the influence of noise, redundancy and uneven sampling. The most problematic case is an

50

IADIS International Conference Applied Computing 2010

overlay of noisy point sets, since the local surface is then refed by multiple point layers. This effect
significantly reduced by the correction step, which solves the redundancy by removing low quality
local neighborhoods. The correction is additionally supported by a following smoothing procedureis
adapted to the scanline curvature (second column) to preserve edges while smoothing noise.

smoothing performs a weighted averaging, an uneven sampling is implicitly corrected, too. In «
increase the computation speed of the followircal point processing operations, the number of point:
been adaptively reduced. The models also show different kinds of curvature of small and large a
sharp and more smooth edges. Since the simplification procedure is also based on thre information,
it reduces the point number depending on the strength of the curvature (third column). The poir
processed this way show a significantly increased quality of their polygonal approximation (last c
although the point density &so significantly reduce

Figure 6 Case studies for the proposed methods at the examples of different poin

In order to evaluate the efficiency of the proposed approaTable 1shows the total computatic
timings. For data sets up to 1 million points the algorithms take only one to two seconds. For lar
memory access becomas additionz significant issue.

Table 1.Performance evaluation for theoposed methods at the example of
models in Figure 6 using an Intel Core2Duo 2.53GHz, 4GB F

model numbe of data smoothing with correction with simplification to

number points radius 0.1mm radius 0.1mm 100.000 pt
1 12.757.24 37.7 sec. 37.7 sec. 13.1 sec
2 6.201.17; 12.9 sec. 12.9 sec. 6.7 sec.
3 1.488.44. 2.6 sec. 2.6 sec. 1.6 sec.
4 647.590 0.9 sec. 0.9 sec. 0.8 sec.

5. CONCLUSION

We presented strategies for the management, analysis and processing of point clouds derived
scanners. Themethods are fast and robust and adaptively derive their parameters from in most cases.
The employed kdree only stores pointers to the complex scan data structures, which is memory effic
provides immediate access to the additional syinformation generated during the scan process. A fu
improvement to the query time is provided by re-trees, which enable queriesOiilog® n + p,.) time.

The smoothing and poittased simplification can significantly increase the perforn when creating
polygonal approximations of large data sets. Because on the one hand, the number of points to be
is reduced, and on the othesinc the smoothing operations reduce topological distortions due to nois:
presented methods also kéh from utilizing the given system information, like quality meast
uncertainty estimations, and scanline distances to increase the degree of automation and their :

REFERENCES

Ahn, S.J. (2004)Least Squares Orthogonal Distance Fitting curves and Surfaces in Sp. Lecture Notes in
Computer Science. Springer, Be.

Attene, M.and Spagnuolo, M2000: Automatic surface reconstruction from point setspace.Computer Graphics
Forum 19 pp. 457-465.

51

ISBN: 978-972-8939-30-4 © 20010 IADIS

Bade, R. et al. (2007): Reducing artifacts in surface meshes extracted from binary védumed.of WSCQA5, 67-74

Bade, R. et al (2006): Comparison of fundamental mesh smoothing algorithms for medical surface m&iteislaftion
und VisualisierungSCS-Verlag, pp. 289-304.

Chen, Z. and Chou, H.L. (2006): New efficient octree construction from multiple object silhouettes with construction
quality control. In:18th Int. Conf. on Pattern Recognition (ICPR 2006). Vol. 1. pp. 127-130

de Berg M. et al. (2008 omputational Geometry: Algorithms and Applicatiods ed. Springer

DeCoro, C. and Tatarchuk, N. (2007): Real-time mesh simplification using the GPU, In: Proc. Interactive 3D graphics
and games I13D'07, pp. 161-166, ACM.

Dey, T.K. et al, (2005): Normal estimation for point clouds : A comparison study for a voronoi based method. In:
Eurographics Sympos. on Point-Based Graphigs 39-46

Gois, J.P.; et al. (2007): Robust and Adaptive Surface Reconstruction using Partition of Unity Implicits. Computer
Graphics and Image Processing, SIBGRAPI 2007. pp. 95-104

Kriegel, H.-P. et al (2009): LoOP: local outlier probabilities., in Cheung David Wai-Lok et al. ed., 'CIKM', ACM, , pp.
1649-1652.

Lange, C.and Polthier, K. (2005): Anisotropic smoothing of point €aput. Aided Geom. De&2, 680—692

Miklos B. et al. (2010): Discrete Scale Axis Representations for 3D Geomet®CNh Transactions on Graphic. Vol
29(4), pp. 1-10.

Mitra, N.J. et al. (2004): Estimating surface normals in noisy point cloud data. Special isatieJoiComputational
Geometry and its Applications 14, pp. 261-276

Nagai Y. et. al, (2009): Smoothing of Partition of Unity Implicit Surfaces for Noise Robust Surface Reconstruction.
Comput. Graph. Forum 28(5), pp. 1339-1348

Nealen, A. et al, (2006): Laplacian mesh optimizationAiM GRAPHITEPp. 381-389

Nielson, G.M. (2004): Radial hermite operators for scattered point cloud data with normal vectors and applications to
implicitizing polygon mesh surfaces for generalized csg operations and smoothMi$ 184: Proc. of the Conf. on
Visualization '04 Washington, DC, USA, IEEE Computer Society, pp. 203-210

Ohtake, Y. et al, (2003): Multi-level partition of unity implicits. IBIGGRAPH '03: ACM SIGGRAPH 2003 Papers
New York, NY, USA, ACM Press, pp. 463-470

Park, J.C. et al (2006): Elliptic Gabriel graph for finding neighbors in a point set and its application to normal vector
estimation, Computer Aided Design 38, pp. 619-626

Pauly, M. et al. (2003): Shape modeling with point-sampled geometi§IGGRAPH 2003ACM Press, pp 641-650

Pauly, M. et al, (2002): Efficient simplification of point-sampled surfaces/IIB:'02: Proceedings of the conference on
Visualization '02 Washington, DC, USA, IEEE Computer Society, pp. 163-17.

Press, W.H. et al. (2007INumerical Recipes in C++: The Art of Scientific ComputiBgd ed. Cambridge University
Press, Cambridge, UK.

Teutsch, C., et al. (2007): Adaptive Real-Time Grid Generation from 3D Line Scans for fast Visualization and Data
Evaluation., in IVO7, IEEE Computer Society, pp. 177-184 .

52

IADIS International Conference Applied Computing 2010

SLOTS-— A MODELING LANGUAGE FOR SCHEDULING
PROBLEMS

Thomas Scheid) Glnther Blaschek Peter Feigt and Norbert Lebersorger
*Institute of System Software, Johannes Kepler University, Altenberger Str. 52, 4040 Linz, Austria
**|nstitute of Business Informatics, Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria

ABSTRACT

In this paper, we describe SLOTS, a domain-specific modeling language for specifying scheduling problems. SLOTS
allows the modeling of scheduling problems by defining, extending and redefining classes and attributes. A SLOTS
specification not only describes the general structure of the problem, but also defines the format of the input data for
particular problem instances.

KEYWORDS

Optimization, scheduling problems.

1. INTRODUCTION

Scheduling problems are combinatorial optimization problems. They can be described as having some tasks
or jobs that must be scheduled on resources so that given constraints are met. Resources are everything that is
needed to fulfill a specific task. Examples are machines, raw materials and manpower. The jobs can be parts
of a manufacturing process, activities etc. Jobs have a set of properties, e.g. they need a specific amount of a
resource (e.g. 50 kW of energy), a deadline until the job must be completed, or a processing time.
Furthermore, jobs can be related to each other. This means for instance that a job can only start after another
job has completed. The goal in scheduling problems is to find optimal arrangements of jobs on the resources
on a timeline (these arrangements are called “schedules”) that meet all constraints (Blazewic et al., 2001).
The function for expressing the quality of a schedule is called objective function and is either minimized or
maximized. Examples are to minimize the latest completion date of all jobs or to maximize the earnings in a
manufacturing process.

The goal is to automatically generate an optimizer that heuristically solves a scheduling problem. For this
purpose, it is necessary to specify and describe scheduling problems in a general way. It must be considered
that scheduling problems not only consist of the description of the structure of the system, e.g. having jobs
with a specific processing time, but also have external data. So, a particular problem consists of a global part
that describes the structure (the problem class) and a local part with the concrete data for a specific problem
instance. This data can be the number of jobs to be optimized or the processing times of specific jobs.

To specify scheduling problems in such a general way, we developed SLOTS (abbreviation for
Scheduling Language for OptleTs Schedulers). SLOTS is a declarative and object-oriented modeling
language for describing scheduling problems. It allows to specify both the structure of the problem class and
the data.

As the name of the language suggests, it is designed for generating optimizers based on the OptLets
optimization framework (Breitschopf et al., 2005; Breitschopf et al., 2006). This is a general evolutionary
framework that starts with a simple, non-optimal solution and incrementally tries to improve this solution by
means of so-called OptLets. An OptLet is an algorithm that receives an existing solution, performs some
typically simple operations on it, resulting in a new solution. The framework manages the solutions and the
OptLets and returns the best solution at the end of an optimization run. In addition to the SLOTS language
itself, we developed a compiler that generates the necessary C++ code for an optimizer based on the OptLets
framework. Our goal was to generate OptLet optimizers for different classes of scheduling problems just by
specifying the problem in SLOTS, running the SLOTS compiler and building the resulting C++ code.

53

ISBN: 978-972-8939-30-4 © 20010 IADIS

In section 2, we refer to comparable languages in the field of scheduling problems and describe the idea
of declarative programming languages in combination with object orientation. Section 3 describes the basic
language concepts of SLOTS: attributes and classes. In section 4, we show the connection to the input data.
Section 5 presents the scheduling-specific concepts in SLOTS. Finally, in section 6, we present results and
summarize our experiences.

2. RELATED WORK

SLOTS is a language that unites declarative and object-oriented approaches in order to succinctly describe
scheduling problems. This means it can be compared with languages for modeling optimization problems,
but also with languages that combine declarative and object-oriented programming.

We have investigated a number of languages that can be used for modeling optimization problems,
including scheduling problems. Most of them are algebraic modeling languages, such as OPL (Optimization
Programming Language) (Hentenryck, 1999), GAMS (General Algebraic Modeling System) (Brooke et al.,
1992), Mosel (Colombani and Heipcke, 2009), and AMPL (A Modeling Language for Mathematical
Programming) (Fourer et al., 2002). Exceptions are Comet (Hentenryck and Michel, 2005), a constraint-
based language with explicit support for scheduling problems, IF/Prolog (IFComputer, 2010), and three
domain-specific languages, RCSpec (Zentner et al., 1998) and Vishnu (Montana et al., 2007).

Figure 1 summarizes the criteria we formulated. A general description language for scheduling problems
should fulfill all of these. As the figure shows, none of the investigated languages satisfies the entire list of
requirements. Our main critique of the existing description languages is that they are closely connected to the
solver; intricate details about the solution technique must be known in order to accurately describe the
problem. Our goal was a general modeling language that describes the problem, not the way to solve it.

a0
2 o
Z) . i - S QL =
a2 g & -V B
[< 2 = 5 o 9 2
Multiple objective functions
[e] [[] [] [] (o] []
Separation of model and data
[] o [[] [] [] (e] ®

Explicit support for scheduling problems
° o o o ° o ° °

Text-based specification language
° °) ° ° ° ° o

Solver-independent problem description
[J [J [J [J o [[[}

Figure 1. Aspects in related languages

3. BASIC CONCEPTS
SLOTS is a purely declarative language, i.e. it contains only declarative, but no imperative language

elements. A problem specification written in SLOTS consists of a set of declarations of types (including
classes), attributes (variables or constants) and objectives (the aim of the underlying optimization problem).

3.1 Attributes and Data Types

Attributes are declared by specifying a data type, a name and a value:
i nteger anount = 5;

54

IADIS International Conference Applied Computing 2010

float costs = 3.65;
timet = 0.5;

The values of attributes declared in this way cannot change, i.e. they are actually constants. An alternative
to assigning a constant value to an attribute is to declare it as input data:

time duration = <>;

The angle brackets <> mean that the value of the attribute should be read from an input file that is passed
to the generated optimizer. The value is still immutable after it has been read from the input file. Attributes
that shall be altered during the optimization (i.e. assigned a value by the optimizer) are declared by
specifying a possible value range:

time startingDate within 0..1000;

These attributes can be seen as variables that can hold values within the specified range. However, it is
not possible to assign values to these variables within the SLOTS language (as there is no assignment
statement). The values of these attributes are modified only by the generated optimizer. Attributes can also be
defined by means of arbitrary expressions, resulting in so-called computed attributes:

/'l constant

i nteger dbl Amount = amobunt *2;

/1 immutabl e

float total Costs = durati on*costs;

/'l variable

time endDate = startingDate+duration;

Computed attributes can be constant (value can be determined at compile time), immutable (value can be
determined after reading the input data) or variable (value may change during the optimization), depending
on what other attributes are used for computing the value. If a computed attribute depends on an optimized
attribute, its value changes whenever the value of the optimized attribute changes.

There are three numeric data types: integer, float and time (a fixed point data type with a configurable
resolution, used for both points in time and durations). Furthermore, there is a boolean data type. Multiple
values can be stored in a single attribute by using arrays:

integer [] values = {1, 2, 3};
float [] costs = <>
tinme [10] times = <>;

The size of an array needs not to be specified as it can be determined from the initial value or when
reading the input data. Specifying the size can be useful for requiring a particular number of elements in the
input data. Arrays are always constant or immutable, i.e. they cannot be changed by the optimizer.

3.2 Classes and Objects

SLOTS is an object-oriented language, so classes and objects are important core concepts. Classes are
introduced via type declarations and can be used for declaring multiple objects that share a set of properties:
type Myd ass = class {

integer a = 1;
integer b = 2;
b
A class consists of a set of attributes declared with default values. When objects of a class are declared,
explicit values may but need not be specified for the attributes. For attributes that are not specified in the
declaration of an object, the default value specified in the class is used:

M/d ass obj1l; // a=1, b=2

M Cd ass obj2 = {a=3}; // a=3, b=2

M/d ass obj3 = {a=3, b=4}; // a=3, b=4

The first object objl is declared without specifying a value which means that all attributes have the values

specified in the class. For obj2 and obj3, the values are given in form of so-called object literals containing
explicit values for one or both class attributes a and b. Like other object-oriented languages, SLOTS supports
inheritance, i.e. deriving subclasses that override existing attributes and add new ones:

type Extd ass = class of Myd ass {

a=23; /] redefine attribute a

integer ¢ = 5; // add new attribute c

b

55

ISBN: 978-972-8939-30-4 © 20010 IADIS

SLOTS supports polymorphism, i.e. an attribute of class MyClass can hold a value of class ExtClass. For
attributes read from the input data, this means that the input data may contain objects of the base class or a
subclass. Whereas imperative object-oriented languages allow to override methods, SLOTS uses overriding
of attributes (i.e. constants or variables). Overriding an attribute changes its default value. Accesses to class
attributes are dynamically bound, as the following example shows:

type BaseC ass = class {

integer a = 1;
integer b = 2;
integer ¢ = atb;
1
type Extd ass = class of Based ass {
a=3;
}

BaseCl ass baseQhj; // c=3
Extd ass extvj; // c=5
In this example, the attribute ¢ is a computed attribute with a value depending on the attributes a and b
which are accessed using dynamic binding. Dynamic binding not only comes into play when an attribute is
overridden in a subclass, it also becomes effective when attributes are declared with an explicit value in an
object literal:
BaseCl ass basehj2 = {a=2}; // c=4
Ext O ass extvj = {b=4}; /] c=7
Specifying an explicit value for an attribute within a literal has the same effect as overriding an attribute
in a subclass. So, each object literal can actually be seen as a singleton of an anonymous class derived from
the class specified in the declaration of the object. When overriding an attribute, it is also possible to change
a constant value to a value read from the input data or vice versa or even to change an optimized value to a
constant value or a value read from the input data or vice versa:
type BaseC ass = cl ass {
integer a = 1;
integer b = <>
integer ¢ within 1..10;

b

type Extd ass = class of Based ass {
b =3
C = <>

}

For objects of type BaseClass, b is read from the input data and c is a variable between 1 and 10, set by
the optimizer. For objects of type ExtClass, b is not read from the input data but set to a constant value of 3,
and c is no longer variable but read from the input data (and immutable afterwards). In conventional object-
oriented languages, overriding mainly affects method implementations. In SLOTS, overriding is used to
modify values of attributes and to redefine the way how values of attributes are determined.

3.3 Objectivesand Constraints

At the end of each SLOTS specification, an objective function must be specified. Objective functions can be
either minimized or maximized:
m nimze total Ti ne;

The specified expression must be an optimized attribute or be computed from at least one optimized
attribute. The generated optimizer will try to find a combination for all optimized attributes such that the
declared objective becomes minimal or maximal (whatever is specified). It is possible to define multiple
objective functions. In this case, a multi-objective optimizer is generated which produces a pareto front
instead of a single solution, i.e. a set of solutions that are not dominated by other solutions.

Scheduling problems (and optimization problems in general) often have constraints that must be satisfied.

In SLOTS, constraints can be specified by declaring attributes of the special type constraint:
constrai nt neetDeadline = conpl eti onDate <= deadl i ne;

The generated optimizer will respect all constraints that are contained in the global attribute constraints or
in a class attribute constraints. Per default, these attributes are defined as empty arrays. In order to enable
checking of a constraint, the constraints attribute must be overridden accordingly:

56

IADIS International Conference Applied Computing 2010

constraints = {neetDeadl i ne};
The optimizer will try to find a combination for all optimized attributes such that all constraints are
satisfied.

4. CONNECTION TO INPUT DATA

SLOTS allows to define the values of attributes in external files. The same SLOTS specification can be used
for multiple problem instances by changing only the input data. The input data file contains all specific data
of a problem instance and the SLOTS specification defines the common structure of the problem.

4.1 Declaration of Input Data

As already mentioned, attributes can be declared to be read from an input file:
float costs = <>;

This declaration means that the float value costs is read from an input file. The input value is mandatory.

In some cases, it is useful to define default values for attributes:
float costs = <=2.0>;

In this case, the default value of costs is set to 2.0. Attributes with a default value are optional in the input
data. If the value is present in the input data, it overrides the default value. Sometimes, it is convenient to use
a different attribute name in the input data than in the SLOTS specification, e.g. if the names in existing input
data come from a legacy system and differ from the names used in the SLOTS specification. Therefore,
SLOTS allows to specify different names for input data attributes:

float costs = <price>;
float penalty = <wei ght =0>;

Here, the first input data attribute has the name “price”. SLOTS connects the input attribute price to the
corresponding SLOTS attribute costs. It is also possible to combine attribute renaming and default values, as
the declaration of the attribute penalty (with the input name weight and a default value of 0) shows.

4.2 Input Data For mat

SLOTS uses XML as its default input data format, because it is a generally accepted standard. The structure
of the input file is specified by the structure of the SLOTS specification. The root container which contains
the attributes in the global scope is called “slots”. This node contains all elements marked as to be read from

input in the SLOTS specification. The following example shows a global SLOTS attribute costs of type float.
float costs = <price>;

Input data example:
<slots >

<pr| ce type="float">3.0</price>
</ él ot s>
The name of the input data attribute is redefined to price. The name of an attribute in the SLOTS
specification defines the name of the attribute in the input data. For better readability of the input data, each

XML element has an optional XML attribute type which describes the content of the XML element. In the
example, the type of price is float.

5. SCHEDULING-SPECIFIC CONCEPTS

SLOTS is a language designed to express a wide range of problems, but the main focus is on scheduling
problems. A number of predefined classes and attributes makes the definition of scheduling problems
straightforward in most cases.

57

ISBN: 978-972-8939-30-4 © 20010 IADIS

5.1 Scheduling Problems

The two basic abstractions in scheduling problems are resources and jobs. A job (also known as task or
operation) models an activity that is executed on a number of resources over time. A resource is any item or
commodity that is required by a job to ensure that it can be executed successfully. Painting a car door red is a
job that requires red paint, a brush, a car door, and a painter. Figure 2 shows how nine jobs could be run on

three resources.
Resource A { Job 2 H Jobs Hjob 8}»

Resource B *{Job 1}[Job 4 H Job 7 %
Resource C *{ Job 3 H Job 6 Hjob 9 }

Time

Figure 2. Scheduling problem

The two main classes that SLOTS provides to support scheduling problems are Job and Resource. Job
contains attributes that represent due dates, release dates, deadlines, precedence, and other concepts.
Resource models any renewable or non-renewable resource that is needed to run a job. The predefined
attributes of Job and Resource have default values that are suitable for many cases, but can be redefined in
order to describe more sophisticated scheduling problems. The predefined attributes help to keep descriptions
of simple cases short but nevertheless allow the formulation of rather complex scenarios by overriding them

in subclasses.

5.2 Example: Common Due Date

The following example shows how to formulate a concrete scheduling problem in SLOTS: the Common Due
Date problem (Brucker, 2004). Each job has a penalty that is computed as its weighted earliness or tardiness,
relative to a common due date for all jobs. The objective is to minimize the sum of all jobs’ penalties.

time coommonDueDate = <>;

type Wei ghtedJob = class of Job {

processi ngTi me = <>;

dueDat e = commonDueDat e;

i nteger earlyWight = <>;

i nteger tardyWight = <>;

integer penalty = earliness * earlyWight + tardiness * tardyWight;

i
The attribute commonDueDate is declared at the top level outside the definition of the job class. This is a
so-called global attribute that is independent of jobs. The value of commonDueDate will come from the input
data. The class WeightedJob inherits from Job. The two predefined (and inherited) attributes processingTime
and dueDate are defined with new values. The processingTime is read from the input data and thus overrides
the default value of 1, and the dueDate is the same as the value of the global attribute commonDueDate. A
new attribute penalty with type integer is introduced, its value is the sum of earliness times earlyWeight and
tardiness times tardyWeight. Both earliness and tardiness are predefined attributes of class Job, and both
earlyWeight and tardyWeight are user-defined job-specific attributes that get their values from the input data.
Since a job cannot be early and tardy at the same time, the penalty is influenced by either earliness or
tardiness. This succinctly specifies all data pertinent to the jobs, each job has its own processingTime, they
all share the commonDueDate, and each job has its own penalty.

For this example, we do not need a custom Resource class, the default will do fine:

Resource resource;

resources = {resource};

Wi ght edJob [] wei ght edJobs = <>;

j obs = wei ght edJobs;

One resource with the name resource is defined, and the predefined global array resources is redefined as
that single resource. Also a global array weightedJobs is declared as initialized from the input data,

58

IADIS International Conference Applied Computing 2010

containing WeightedJobs. The predefined global array jobs is then set to the value of weightedJobs. These
two arrays, resources and jobs, define all resources and jobs for the SLOTS optimizer, which then tries to
find a good assignment of jobs to resources, where the quality of an assignment is defined by the objective
function:

m ni m ze sun(penalty) of wei ghtedJobs;

These 11 lines fully specify the problem, and are sufficient to generate an optimizer. This is mainly due to
the fact that SLOTS already contains a dozen predefined classes and more than 50 predefined attributes that
are specifically tailored towards scheduling problems. There is no need to explicitly declare what the
earliness or tardiness of a job is, SLOTS already knows how these can be calculated from the due date and
completion date. Some predefined attributes introduce implicit constraints: by declaring a release date, a
job’s possible position within a schedule is constrained. The predefined attributes allow to express mutual
exclusion (by declaring a set of incompatible jobs), required resources for running a job, precedence
relationships (including time lags), deadlines, job hierarchies (where jobs are composed of smaller
operations), etc. A number of attributes are automatically computed, such as the completion date, the
lateness, the earliness, and the tardiness of a job. A resource has predefined attributes for dealing with
machine speed, renewability, maximum capacity, times during which the resource is unavailable, setup times,
and more.

Any properties that are not expressible via predefined attributes can be added as custom attributes or
constraints (as described in section 3.3).

6. CONCLUSION

The SLOTS language allows the specification of scheduling problems in a compact way. It has been
successfully used for a set of different scheduling problems, including well-known problems such as Job
Shop, Open Shop, Flow Shop or Project Scheduling. In all cases, the problem specification of the complete
problem is about 20 lines of SLOTS code. Using XML as the input and output format brings the advantage of
having a standardized format. The input format is defined so that SLOTS developers can easily connect a
SLOTS specification to the input and the output file formats.

The SLOTS compiler for the OptLets framework creates fully functional problem-specific optimizers.
Table 1 shows a summary of different case studies using the SLOTS compiler. For each of the problem
classes, the table presents the lines of code for the SLOTS specification, the generated lines of code for the
OptLets optimizer and for 6 randomly selected problem instances with different sizes the average deviation
to known optima.

Table 1. SLOTS Compiler: Case studies

Problem SLOTS LoC Generated LoC Deviation to Optima (Avg.)
Common Due Date (Beasley, 2010) 13 5553 8.5%

Project Scheduling (TU Munich, 2010) 22 10401 7.5%

JobShop (Beasley, 2010) 19 7609 24.2%

OpenShop (Beasley, 2010) 19 7206 1.6%

FlowShop (Beasley, 2010) 19 7609 19.1%

These results show that the generated optimizers deliver acceptable but not yet optimal results in many
cases. Nevertheless, the generated optimizer is a good starting point and can be extended in a variety of ways.
In particular, new OptLets can easily be added in order to improve the result of the optimization.

The combination of object-orientation and declarative programming has proven to be very useful for
formulating scheduling problems. Especially the predefined classes in SLOTS such as jobs and resources
enable a rapid and compact specification of the problem. For many problem classes, just some of the
predefined attributes need to be changed. Every redefinition of a built-in attribute changes the problem
attributes detected by the SLOTS compiler, which leads to a different optimizer. Inheritance allows to easily
extend the predefined classes for adding new problem-specific attributes.

SLOTS satisfies all the criteria we postulated in section 2 and is thus a general specification language
better suited for describing scheduling problems than any of the investigated languages.

59

ISBN: 978-972-8939-30-4 © 20010 IADIS

In this paper, we presented the basic concepts of the SLOTS modeling language and showed how to
formulate scheduling problems by using and extending the predefined classes and attributes in an easy way.
Our experiments with different problems showed that SLOTS is suitable for a broad range of scheduling
problems

REFERENCES

Akesson, J., Gafvert, M., and Tummescheit, H., 2009. Jmodelica — an open source platform for optimization of modelica
models.Proceedings of MATHMOD 2009 — 6th Vienna International Conference on Mathematical Maodelling

Beasley, J. E. (2010). OR-Libratyttp://people. brunel.ac.uk/~mastjjb/jeb/info.html

Blazewic, J., Ekcer, K., Pesch, E., Schmidt, G., and Weglarz, J., 3abeduling Computer and Manufacturing
ProcessesSpringer, second edition.

Breitschopf, C., Blaschek, G., and Scheidl, T., 2005. Optlets: A generic framework for solving arbitrary optimization
problems WSEAS Transactions on Information Science and Applications, 2(5)

Breitschopf, C., Blaschek, G., and Scheidl, T., 2006. A comparison of operator selection strategies in evolutionary
optimization.Proceedings of the 2006 IEEE IRI International Conference on Information Reuse and Integration

Brooke, A., Kendrick, D., and Meeraus, A., 19&AMS: A User’'s GuideThe Scientific Press.
Brucker, P. (2004)Scheduling AlgorithmsSpringer.

Colombani, Y. and Heipcke, S., 2009. Mosel: An Overviewhttp://www.dashoptimization.
com/home/downloads/pdf/mosel.pdf

Fourer, R., Gay, D., and Kernighan, B., 20BRIPL: A Modeling Language for Mathematical ProgrammiBgixbury
Press.

Hentenryck, P. V., 1999 he OPL Optimization Programming Languab8T Press.

Hentenryck, P. V. and Michel, L., 2005onstraint- Based Local SeardiIT Press.

IFComputer, 2010. IFProlodpttp://www. ifcomputer.co.jp/IFProlog/home_en.html

Montana, D., Hussain, T., and Vidaver, G., 2007. A genetic-algorithm-based reconfigurable scireDaleal, K., Tan,
K., and Cowling, P., editors, Evolutionary Scheduling

TU Munich, 2010. Project Scheduling Problem Library — PSPhtf.//129.187.106.231/psplib/.

Zentner, M., Elkamal, A., Pekny, J., and Reklaitis, G., 199&nguage for describing process scheduling problems
Computers and Chemical Engineering, 22(1):125-145.

60

IADIS International Conference Applied Computing 2010

ACCELERATE TWO-DIMENSIONAL CONTINUOUS
DYNAMIC PROGRAMMING BY MEMORY REDUCTION
AND PARALLEL PROCESSING

Y ukihiro Y oshida, Koushi Yamaguchi, Y uichi Yaguchi, Yuichi Okuyama,
Ken-ichi Kurodaand Ryuichi Oka

The University of Aizu
Aizu-wakamatsu, Fukushima, Japan

ABSTRACT

This paper contains a proposal for optimizing and accelerating the computation of two-dimensional continuous dynamic
programming (2DCDP). 2DCDP processing is optimized by memory reduction and parallelization using OpenMP. We
apply buffer resizing and utilize toggle-type buffers to reduce the required memory size. In addition, same-rank processes
and pixel correspondence calculation are parallelized by OpenMP instructions to reduce the computation cost/time of
2DCDP. For accumulation, we also apply arealignment of buffering addresses for SIMD on multi-cores/multi-processors.
The experimental results show that the computational time and the memory usage have reduced to about 1/4 and 1/5 of
the original ones, respectively. Moreover, the concurrency of 2DCDP hot-spot is improved from 5.8 to 7.1 on a quad-
core CPU with 8 threads.

KEYWORDS

Image recognition, Pixel correspondence, Continuous DP, Parallelization

1. INTRODUCTION

With the development of high-frequency, high-density, and multi-cored central processing units (CPUS) or
graphic processing units (GPUs), developers can implement complex algorithms for high-efficiency
applications. The fields of image recognition, especially, need many complex algorithms for image retrieval,
segmentation, matching, stereography (Ohtaet. Y et al., 1985, Okutomi. M et a., 1993), or 3D object
construction (Xiaojun. Z et al., 2002, Iseki. K et al., 2008). Because of the importance of real-time
processing for image recognition, high-performance processors with process optimization are required. In
fact, most image recognition algorithms such as the scale-invariant feature tracker (SIFT) (Lowe. D, 2004),
histograms of oriented gradients (HoG) (Dala. N et al., 2005), and template or block matching (TM, or BM)
(Pereira. Set al., 2000, Zhu. S et a., 2000), are already implemented on multi-cored CPUs or GPUs.

Two-dimensional continuous dynamic programing (2DCDP) (Y aguchi. Y et a., 2008) iswell known as a
pixel-matching algorithm applicable to non-linearly deformed images. It was proposed as a technique for
optimum matching of pixel-wise matching. 2DCDP can acquire the pixel correspondence between an input
image and a reference image with very high accuracy even for affine transformation and non-linear
segmentation relative to other existing techniques. 2DCDP agorithm can very effectively use a pixel-
correspondent relation for not only image recognition but also other applications, such as segmentation, pixel
flows of image correspondence (Kawashima. Y et a., 2009), and three-dimensional shape reconstruction.
Image recognition and segmentation can be simultaneously processed by full-pixel correspondence. However,
it requires enormous powerful machine, memory space, and complex calculation of O(N?).

In this paper, we show an approach to optimize and accelerate the computation of 2DCDP. Its
applications can benefit from solving the issues of big computational complexity. The 2DCDP processing
reguires enormous memory space for buffering four-dimensional results. We apply buffer resizing utilize of
toggle-type buffers 2DCDP computation to reduce the memory requirement. In addition, parallelization by

61

ISBN: 978-972-8939-30-4 © 20010 IADIS

OpenMP instructions and realignment of the buffering address for SIMD on multi-cores/multiprocessors are
applied for acceleration.

2. TWO-DIMENSIONAL CDP (2DCDP)

2.1 Basic Concepts

2DCDP was proposed by Oka, et al. as an extension of continuous DP (CDP) to two dimensions among the
spotting recognition methods in 1997 (Oka. R et al., 1997). Image-spotting recognition is a technique for the
simultaneous segmentation recognition of an object through the pixel correspondence of images, as shown in
Figure 1.

Pixel matching image

/

Image
spotting

Reference image Segmentation image

Figure 1. Image spotting

2.2 The Algorithm of 2DCDP

2DCDP processing flow is shown in Figure 3 (a). The coordinates of input image S and reference image R
are defined as follows:

SE{(,j)|1<i<I, 1<j<J}

R2{(mn)|1<m<M1<n<N} @

Next, mapping R — Sis defined. In other words, {andy, as used in the following equation.
(m,n) € R= ({(m,n),n(m,n)) €8 @

N N N N
Then, the surface of accumulated local minimum D(,i, ,j, m, n) which ,i =&M,N); ,j = #(M,N), or the
accumulation cost from Rto S, is defined as follows:

1 M N
D) = o 33
m=1n=1

w((mv n)v n(mv n)? m, n)d(f(m7 n)v n(mv 7’?,), m, n)} (©)]

The accumulation is processed to a diagonal direction from a starting point on the input image, as shown
in Figure 2 (). This processing axis is defined as a rank direction. The weight of the accumulation path is
shown by w(i, j, m, n). The total weight of the best accumulation is shown by W. The local cost d(i, j, m, n) in

62

IADIS International Conference Applied Computing 2010

the pixel correspondence when the pixel value of point (i, j) of input image S is defined as Syi, j) and the
pixel value of point (m, n) of reference image R is defined as R,(m, n) is defined as follows:

d(i, j,m,n) = || Rp(m,n) — Sp(i.j)] (4)

The accumulation is continuously processed from all starting points on the input image with the last point
with the minimal accumulative cost is found. Point is defined as a spotting point. Figure 2 shows overview
of 2DCDP and an example of mesh structure in 3D representation of 4D-working area (Figure 2 (). To
smoothly cumulative calculate, the 2DCDP utilized four-tuple calculation techniques with binomina and
diagonal direction and propagation (Figure 2 (b)). During accumulative calculation process, to support local
rotation and local scaling, as Figure 2 (c), it is necessary to select 7 paths for calculation of two lower-rank
nodes. After accumulative calculation, spotting point with accumulated local minimum value, which
expressed in equation (3), then back-trace processing can reconstruct the segmentation space.

Rank

=« Reference image

Optical path (m, n)

Input image
(i’ J) Object and segmentation
i area projections

Segmentation area

(@)
J ™~ ;;\ Is/;s
317 » 1174
O/ ‘\C> / /33 + = - 87
dxx, dxy dyx, dyy 6 -45° 5 2
0° 4 1 7
M +45° 6 3
Row-direction path Column-direction path
(b) ©

Figure 2. Accumulation plot (a); Four-tuple calculation technique (b); and Local rotation and local enlargement (c)

3. ANALYSISOF 2DCDP

3.1 Profiling

First, we survey performance of the 2DCDP a gorithm which implemented by Y aguchi, et a. (Yaguchi. Y et
a., 2008). This processing flow is shown as Figure 3 (a). For this survey, experimental machine
specifications as is following: OS, Windows XP 64bit; CPU, Intel Core i7, 2.67GHz; and memory, 9GB
SDRAM. Moreover, for the measurement of 2DCDP concurrency and memory usage, we use Microsoft
Visual Studio 2008 Professional, Intel Parallel Studio evaluation edition
(http:/lwww.xlsoft.com/jp/products/intel/parallel/), and a CRN Monitor (http://www.runread.com).
Conventional 2DCDP is partial parallelized by OpenMP. Asthe profiling result of conventional 2DCDP, the
ratio of each processing is as follows: calculation of accumulation cost is 87%; calculation of local cost is
6.4%; buffer initialization is 6.5%; sorting accumulation cost is 0.01%; and back-trace is 0.06%;. The
execution costs are shown in Table 1. Images used in profiling are shown in Figure 4. The unit of image isa

63

ISBN: 978-972-8939-30-4 © 20010 IADIS

pixel. Clearly, there was a particularly large calculation time in accumulation processing, and the execution
time increases rapidly as the image size increases.

Calculationand buffering Calculation and buffering
of Local cost of Accumulation cost
o [calculation of Local cost |
@ 2X Local cost is non-buffered
Calculationand buffering Choice and accumulate
of Accumulation cost of minimum cost
| Sorting of Accumulation cost | | Sorting of Accumulation cost |
| Back-trace | | Back-trace |
(a) (b)

Figure 3. Conventional 2DCDP Flow (@); Proposed 2DCDP Flow (b)

Table 1. Execution results of conventional 2DCDP

Input image Reference image Computing time Utilized memory
120x 79 34x48 0.84 sec. 348 MB
120x 79 53x71 1.92 sec. 796 MB
200 x 136 43x 52 3.54 sec. 1350 MB
200 x 136 92 x 84 Inexecutable

5

Image 1 (120x 79)
Image 5 (92 x 84)

. Image2 (34>< 48) § '

Image 3 (53 x 71) Image 4 (200x 136) Image 6 (43 x 52)

Figure 4. Images used in profiling

3.2 Problems

The problems of 2DCDP processing are that it has time complexity of O(N*) to calculate the pixel
correspondence of two-dimensional data, and the space complexity of O(N*) also requires memory storage as
the result. Details of the methods to improve performance are explained in the next section.

4. IMPLEMENTATION OF 2DCDP

To solve the issues mentioned above, we apply computational methodology optimization. Various
approaches for optimization of computational methodology, such as buffer resizing and the use of a toggle-
type buffer, reduction and relocation of branches, improvement of multi-threading performance by parallely
instruction, pipeline processing, and memory management optimization by function pointer, have already

64

IADIS International Conference Applied Computing 2010

been proposed for other areas (Franchetti. F et al., 2009, Kim. H et al., 2009) but not intensively applied to
2DCDP.

In this paper, we apply some of the above methods, such as buffer resizing, using a toggle-type buffer,
reduction and relocation of a branch, parallelization by OpenMP, and realignment of the buffering address
for Single Instruction/Multiple Data (SIMD) to 2DCDP

4.1 Buffer Reduction

In the 2DCDP processing, al of the local costs are buffered after being calculated at the beginning because
the local cost is calculated separately for two stages in the initial algorithm.However, the pixel
correspondence from R, to S, is always constant through the current local path. Therefore, buffer utilization
is reduced by calculating the local cost in each time when requested in accumulation processing. A new
2DCDP processing flow is shown in Figure 3 (b).

Next, al of the accumulation data is buffered in the 2DCDP because, in the initial algorithm, these four
kinds of data are intended to be used in the back-trace processing. However, the current back-trace
processing can be calculated using only the sum of four variables. Therefore, we use two toggle-type arrays,
as shown in Figure 5. To obtain the accumulation cost, only two foremost ranks necessary for the
accumulation are buffered. In other parts, four variables are gathered and buffered.

%0
ol
72 »

(o]

2 4y
1 & 7
- ®/
n
0
Rank Rank

Figure 5. Toggle-type buffering

4.2 Paralldlization

The accumulation processing is parallelized using OpenMP in the same rank in Figure 6 (@) because
processes in the same rank do not depend on each other. Moreover, because the corresponding point is
constant at each time, the calculation of the local cost from the pixel correspondence and accumulation
processing is parallelized using OpenMP, as shown in Figure 6 (b)

4

Parallellized
elements

Already) 0
calculated)
elements

<reference image>

(a) (b)

Figure 6. Parallelization of same rank processing (a); Parallelization of local cost calculation

N W A

65

ISBN: 978-972-8939-30-4 © 20010 IADIS

4.3 Sorting of Memory Alignment

In the 2DCDP, the accumulation cost buffer is composed of a two-dimensiona array. The accumulation
process requires synchronization in a diagonal rank direction. Single Instruction/Multiple Data (SIMD) is a
technique of simultaneous computation for the data on the adjacent memory address. Therefore, proposed
2DCDP processing can be applied to SIMD by realigning the sequence data so that the processing address in
the rank is adjacent, asin Figure 7. We do not implement SIMD in this research, but the Intel C++ compiler
supports automatic vectorization for SIMD. As aresult, the processing time is accel erated.

m Array No.
01,2 3/ \@
nita /5 /6 ;/t//
8 /9 101 3

12 713 714,/ 15

\%Synchronization is required
Rank

Figure 7. Realignment of accumulation buffer

4.4 Branch Reduction

In conventional 2DCDP, the processing of image boundaries is executed by four functions using a branch.
Therefore, padding is implemented in the accumulation buffer to reduce the branch in Figure 8. In addition,
the branch in the loop processing that does not depend on the loop variable is relocated out of the loop.

P

. Valueless element
Border of image Border of padded image

Figure 8. Padding of image

5. EVALUATION

5.1 Experimental Methods
We apply the proposed 2DCDP processing to several image combinations. The experiment environment is

the same as profiling. The calculation time is measured by a timer library embedded to C++. The memory
cost is measured by the CRN Monitor.

66

IADIS International Conference Applied Computing 2010

5.2 Experimental Results

The experimental results comparison of conventional 2DCDP and proposed 2DCDP is shown in Figure 9.
Because of our implementation, the calculation time is improved to about 4.0 times of the original time, and
the memory cost becomes 21% of the original memory cost. Moreover, the concurrency improves from 5.8 to
7.1 on the quad-core CPU calculable with 8 threads.

Computing time Utilized memory
sec GB

3.0 7]
e -
‘ 4.0 times faster |

1.0 4 | 0.21 times fewer

20 - 1/

Vi 0.5 -

1.0 1 . a
(a) 1 (b)
/.I/ l l |] l | | l l | l l l |] l | | l l | l
0 100M 200M Pixel 0 100M 200M Pixel
Total pixel counts (Input image * Reference image) Total pixel counts (Input image * Reference image)

Figure 9. Results comparison of conventional and proposed 2DCDP Computing time comparison (a); Utilized memory
comparison (b)

6. CONCLUSION

In this paper, we report the result of the implementation of the optimization and acceleration methods for
two-dimensional continuous dynamic programming (2DCDP) with memory reduction and parallel processing.

As a result of profiling, because the calculation costs on accumulation processing are particularly large,
we have greatly improved the computation time for accumulation. The accumulation processing is
paralelized using OpenMP in the same rank because each element in the same rank are mutually independent.
Moreover, the search of the corresponding point from an input image to a reference image and accumulation
processing are parallelized using OpenMP. As a result, processing is accelerated by dividing the calculation
of O(N*) into O(N?) and executing it in parallel. In addition, the local cost buffer and the accumulation cost
buffer are reduced by reviewing the processing. Finally, on the average, the calculation time is 4.0 times
faster than the original time, and the memory cost becomes 21% of the original memory cost.

This method can be applied to acceleration on SIMD or cluster processing systems such as GPGPU and
Cell processors by memory reduction and improvement of granularity.

REFERENCES

Dala. N et al., 2005. Histograms of oriented gradients for human detection. IEEE Computer Society Conference on
CVPR, Val. 1, pp. 886-893.

Franchetti. F et a., 2009. Discrete Fourier Transform on Multicore. IEEE Signal Processing Mag, Vol. 26, No. 6, pp. 90-
102.

Iseki. K et al., 2008. 3D Shape Reconstruction Using Optima Pixel Matching Between Images. IPSJ SIG Notes.
CVIM2008, pp. 101-108.

67

ISBN: 978-972-8939-30-4 © 20010 IADIS

Iwasa. Y et d., 2005. Algorithm for guaranteeing monotonous contiguity of pixel correspondence in spotting recognition
of image, MIRU 2005, pp. 1S3-98.

Kawashima. Y et a., 2009. High Speed and High Accuracy Mation Vector Detection by On-sensor Pixel Matching. ITE
Technical Report, Vol. 33, pp. 29-32.

Kim. H et a., 2009. Multicore Software Technologies: A Survey. |EEE Signal Proc Mag, Vol. 26, No. 6, pp. 80-89.

Lowe. D, 2004. Digtinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision,
Vol. 60, No. 2, pp. 91-110.

Machino. T et a., 2008. Optimizing Two-Dimensional Continuous Dynamic Programming for Cell Broadband Engine
Processors, FCST 2008, pp. 186-193.

Nishimura. T et al., 1997. Two-dimensional Continuous DP for spotting recognition in an image. PRMU1997, pp. 1-7.

Ohtaet. Y et a., 1985. Stereo by Intra- and Inter-Scanline Search. IEEE Trans. on PAMI, Vol. 7, No. 2, pp. 139-154.

Oka. R, 1998. Spotting Method for Classification of Real World Data. The Computer Journal, Vol. 41, No. 8, pp. 559-
565.

Okutomi. M et a., 1993. A Multiple-Baseline Stereo. IEEE Trans. on PAMI, Vol. 15, No. 4, pp. 353-363.

Pereira. S et a., 2000. Robust Template Matching for Affine Resistant Image Watermarks. |EEE Transactions on Image
Processing,0 Val. 9, No. 6, pp. 1123-1129.

Xiaojun. Z et a., 2002. Real-time 3D Shape Reconstruction and Refinement from Multi-viewpoint Image Sequences.
IPSJ SIG Notes. CVIM2002, pp. 61-68.

Yaguchi. Y et a., 2008. Two-dimensional continuous dynamic programming for spotting recognition of image. Proc.
Meeting on Image Recognition and Understanding (MIRU2008), pp. 707-714.

Zhu. S et a., 2000. A New Diamond Search Algorithm for Fast Block-Matching Motion Estimation. |EEE Transactions
on Image Processing, Vol. 9, No. 2, pp. 287-290.

68

IADIS International Conference Applied Computing 2010

EFFECTIVE RESOURCESALLOCATIONIN A P2P
OVERLAY TO EXECUTE GRID WORKLOADS

Rocco Aversa, Luigi Buonanno, Beniamino Di Martino and Salvatore Venticinque
Department of Information Engineering - Via Roma 29, 81031 — Aversa, Italy

ABSTRACT

Peer to peer systems (P2P) allow users to be connected in order to share resources and information. They have been
exploited in different application contexts: distributed computing, contents and files sharing, collaborative systems.
Nevertheless many proposals have been conceived to exploit P2P for sharing computational power, however each known
successful solution has been designed to solve a specific problem. Many issues arise if one aims at approaching the
design of a general P2P platform to support parallel/distributed computing according a Grid-like philosophy. In this paper
we propose a completely distributed approach. Upon an overlay that is similar to the most popular Kademlia based P2P
file sharing systems, we aim at supporting decentralized sharing of computational resources for transparent and remote
execution of user’s applications. We focus on effective gathering of resources and on workload management of submitted
tasks. Simulation results of different task allocation strategies are presented.

KEYWORDS

P2P, power, sharing, resources, balancing.

1. INTRODUCTION

A common motivation for P2P projects is the availability of billions of pcs over the network that, for the
most part of the day, are performing nothing more than idle cycles. Even if the overlay configuration can
change very quickly, the great number of peers can always grant the availability of needed resources. The
main benefits provided by the utilization of a P2P architecture for resources sharing@wst @gduction

because only available pcs on the internet are used, rather than very expensive supercomputers; 2)
Performance improvemenin fact there is a huge number of idle machines available over the Internet; 3)
Reliability, because replicating a task, the more a system is distributed, the lesser it can be that a fault
somewhere will compromise it.

Existing solutions do not work if we are looking for an infrastructure that allows users to exploit shared
resources by delegating the execution of their applications to the network. That is because they are conceived
to solve specific problems. For example Seti@home [20] adopts a centralized approach where a top layer
keeps the scope of the problem, and a myriad of mindless nodes provide the raw power. It works at its best
with parallelizable problems that are in charge of a single company or entity. For a different scenario, where
n nodes are interested in having their tasks performedmanaddes provide computing power, for example
to get credits, a different solution is needed. Some questions to be answered are: how many peer should be
used to schedule the task in order to bound overhead, to get desired performance and reliability? how
choosing the best peers among the available ones? In this paper a completely decentralized approach for
distributed scheduling is proposed and different task allocation strategies have been evaluated.

Mandatory facilities of a framework that implements such a P2P overlay are:

Effective resources looku@ur overlay of nodes and resources retrieval is based on the well-known
distributed Hash Tablesalgorithm. This allows a very efficient and predictable resource discovery and
localization. The mechanism is very similar to the one adopted by the most popular, Kademlia based, P2P file
sharing systems [12].

Profiling. In a traditional P2P system (file sharing-oriented), each peer shares a certain amount of files.
Similarly, in our model every peer will share one or more computing profiles which describe software and
hardware equipment of nodes. In this regard, we need to describe, in a synthetic but exhaustive way, the

69

ISBN: 978-972-8939-30-4 © 20010 IADIS

heterogeneous architectures that compose the overlay network. We investigate a model for resource
characterization, that allows to describe peers and to discover them according to both architectural and
performance parameters.

Performability. In a typical file sharing P2P environment, the same resource is usually shared by many
peers. Redundancy allows to grant both availability (a node quitting won't compromise the download) and
performance (a peer can download the resource by multiple sources, reducing the required time).

Other issues to be addressed are (but they are not limited to) resource localization, interoperability among
heterogeneous systems, load balancing, resource optimization, security and trusting. We focus here on
resources allocation strategies for an effective workload balancing and distributed scheduling. Effective
collection of resources to optimize the system utilization and the performance of the distributed execution
represents the main objective. The paper is organized as follows. In section 2 we discuss related works.
Section 3 presents our P2P approach for computational resources sharing. Section 4 describes a model of our
system and its characterization. Section 5 shows simulation results. Finally we come to conclusions.

2. RELATED WORKS

Peer to Peer (P2P) refers to logical organization of computing entities where each individual knows its
neighbors and can behave both as a server and a client. We can distinguish three main classes of P2P
applications: distributed computing oriented, file sharing and collaborative. In particular distributed
applications split complex tasks into smaller sub-tasks that can be performed on a number of independent
nodes spread over the net. There are some relevant examples of P2P systems oriented to parallel and/or
distributed computing, which have been successful in their exploitation. Nowadays P2P represents an
alternative approach to Grid [8] for resource sharing in heterogeneous and geographically distributed
systems. GRID has been developed to support resource sharing among heterogeneous machines
geographically distributed and administrated by different organizations. The objective of Grid is to exploit
great part of them that is usually underutilized for most of the time when someone requires computing power
for its scientific application [9]. P2P systems, on the other hand, have been developed in order to allow
heterogeneous users to share information and with the purpose of optimizing the availability of these data in
a dynamic environment where users can log in and out with a high frequency. [18] reports a comparison
between the P2P and Grid approaches to distributed computing. A major difference is that the Grid
computing is mostly used to aggregate very powerful, distributed and dedicated machines. On the other hand,
the P2P approach relies on common, general purposes machines distributed across the Internet. Current P2P
systems have the perk of allowing a very high number of users (hundreds of thousands is a common figure).
Anyway, they offer few services, without doing assumptions on the reliability of the peers themselves [8].
Adaptivity is anyway the biggest benefit that P2P systems deliver. They can automatically adapt to changes
in the environment, as connections, disconnections, network failures etc. On the other hand, without any sort
of distributed scheduling, it is very complicated to ensure a given QoS level [7]. There are many projects
which use a P2P paradigms in order to index available Grid resources. Distributed representation, indexing
and search are addressed by the project DBGlobe [14]. As different peers have different hardware
architectures, middlewares, different O.S., not every peer is a suitable candidate for a given task.
Performance in P2P system is another open issue. There are very few papers that adopt analytic models to
analyze the performances of a P2P network [19]. In [16] a middleware has been showed capable of enabling
the mutual and joint power sharing between users that hold heterogeneous computational units. Possible
criteria adopted to group the peers are: distance, QoS and available resources [3]. In [15], a technique has
been proposed to improve load balancing in a P2P system. In [11] an architecture has been described
(CompuP2P) for the resource sharing on large scale networks. CompuP2P uses a protocol based on Chord
[17] and detects a set of "dynamic markets", each of them groups all the peers that are willing to buy or sell
the same "amount" of computing power. Anyway a special peer ("Market Owner), that is responsible for the
association between requests and offers of computing power, represents a bottleneck. In [10] is proposed a
solution for the scheduling of multiple applications in a concurrent fashion.. Authors propose a decentralized
scheduling pattern and do a comparative analysis of different heuristic logics. There are many Grid solutions
for task scheduling and workload distribution. For example Condor [6] is a high-throughput distributed batch
computing system that provides a job management mechanism, scheduling policy, resource monitoring, and

70

IADIS International Conference Applied Computing 2010

resource management. However, it can hardly be defined as a P2P system, cause of the presence of a central
manager that accepts job submissions. The objective of our research is to design a P2P infrastructure in order
to exploit not only Grid resources, but above all huge numbers of machines which connect dynamically to
the network and do not provide any guaranties.

3. MODELING AND SIMULATION OF RESOURCE ALLOCATION

The model we propose is finalized to achieve a completely decentralized, high-throughput, distributed
system. All the peers can behave like clients which submit jobs, and in the meanwhile they can download
different kinds of jobs by other peers, disconnect and execute them, reconnect to retrieve asynchronously
their results (and providing the output of their own computations). In our vision each user that joins a P2P
overlay can delegate the execution of his applications to a pool of peers whose characteristics are compliant
with the application requirements. On the other hand, he can share his own resources to get, eventually,
credits toward the system. Every peer may perform both roles, also at the same time. Connected peers join a
Kademlia [12] P2P network. Each server peer will be characterized by one or more profiles, which contain
all the relevant information about his hardware and software configuration. Profiles represent what peers
offer to the network overlay. Information include, but is not limited to CPU architecture, number and speed
of processing units, memory size and speed, mass storage capabilities, software libraries, Operative System,
middlewares (agent platforms, MPI, ...), costs. All the parameters are described according to a common
ontology. Then, a digest of each profile is pushed into the P2P overlay. In this way, using the well-known,
consolidated Kademlia algorithms, every client will be able to look for those profiles which are compliant
with the requirements of its applications. Profiles are searched and downloaded as in any P2P file sharing
systems.

Simulation allows the evaluation of the effectiveness of some resources allocation schemes using a P2P
overlay for executing a Grid workload. We need to characterize the resources available in a real P2P system
and the workload of a real Grid system. In Figure 1, our methodology is shown. We considered the logs of a
P2P system for classifying profiles and behavior of machines which are available in the Internet.
Performance information about execution of jobs in a Grid system have been analyzed to get a feasible
statistic that describes arrivals and computational requirements of tasks which will feed the P2P network
overlay. These statistic have been used to feed the simulation model.

Comparative
Analysis

Data Parsing Real

Gealicyc Workload

Simulation

Seti@Home Network Analysis Platform
Network Modeling

Figure 1. Simulation schema

We expect that simulation results can provide results about how task should be handled in a P2P
computing system, and compared how performance are comparable with the ones provided by Grid.

3.1 The P2P M odel

We suppose that infinite compliant servers are always available. Hence, it is necessary to select the best set of
n peers which will be candidate to execute the task. We call it a pool. A task will be scheduled among the
peers of the pool till its completion. Of course many schedule strategies can be implemented once the pool
has been composed. We assume here that each server can join different pools. It maintains a private queue of
tasks to be executed. Tasks are served in each queue according to a FCFS (first come, first served) policy.
When a pool has been identified the task is replicated in the queues of all servers. In our model when a task is

71

ISBN: 978-972-8939-30-4 © 20010 IADIS

being to be executed the server naotifies this event to the others, which delete the task from their queues. In
this way, we avoid that two or more servers execute the same task at the same time. Here, just for simulation
purposes, we assume that neither faults, nor disconnections happen meanwhile the task is executing.
Different choices could be considered to grant reliability or to increase the probability of completion. In order
to optimize the system performance, it is very important to detect the optimal dimension of the pool (the n
value) and the policy for the distributed schedulift) represents the function that finds available
resources, which are suited to execute thettask
c:t€T > P, = [ry,...,1,] € R" (1)

r4iS a resource that is available in the P2P network and satisfies the requirements for the execution of a
task t. Resources, which have been selected usirgftimetion, will be chosen among the ones that, at least
and not exactly, satisfy the minimal requirements for executing t. We expect that less demanding tasks will
benefit of big values of n. In fact they will be replicated also in powerful peers, which will have their queues
increasingly crowded because of many less demanding tasks together with few more demanding tasks. On
the other hand, malues beyond a threshold do not improve performances and overload the peers and the
network. The P2P overlay has been modeled as a set of Mi/lkjueues. K is the number of available
machines which have similar features, and above all provide comparable computing power. A pool of server
hosts is modeled as a set that is composed of one or more multiple server queue (it means same service time
w in the model). Task sources are modeled as Poisson distributions with different arrivgl aatedifferent
computational requirements)(The goodness-of-fit evaluation results, obtained with the Kolmogorov-
Smirnov test, in comparison of the model (job interarrival times is a poisson distribution) to the real workload
are very promising. Furthermore, we have modeled the input workload as sum of poisson distributions
because a sum of two poisson distributiorislPand PX2) is equivalent to R{ +12). To feed the model we
evaluate in the following the andc parameters for the tasks which are executed in a real Grid, famch
real P2P overlay. Faults of nodes and disconnections have not been considered (in simulations), but
reliability can be improved by increasing the number of peers which are scheduling the same task.

3.2 Characterization of P2P Computing Resour cesfor Simulation

To achieve a significant analysis of the proposed platform, we referred to the current hardware infrastructure
of the Seti@home project. The Boinc team keeps an updated statistic of the projects that includes members
and individual contributions, and makes it publicly available. They monitor different kind of data (CPU type,
number of hosts, total credits, total average credits). Credits (or Cobblestones) are the units used by the
various Boinc projects to track the amount of computational work performed by a peer executing a given
task. Its name is due to Jeff Stone of the Seti@home team. The main concept is that 100 cobblestones are
awarded for a day of work on a computer capable of:

- 1000 double-precision MIPS based on the Whetstone benchmark;

- 1000 VAX MIPS based on the Dhrystone benchmark.

In other words a pc can provide 10000 cobblestones, or credits, if it can perform 105 double precision
MIPS in a day, and 105 VAX MIPS. This parameter takes implicitly into account both the raw computing
power of a computer, and the fraction of time it is available for executing tasks from the P2P overlay. In the
simulated environment, we will use the Boinc credit system, and more specifically the RAC (Recent Average
Credits) as a synthetic and mono-dimensional parameter to characterize peers capability. Notice that this is
only for simulation purposes: in the framework we are developing, a profiling mechanism has been
implemented to match the requirements of tasks with available resources.

Recent Average Credits is an estimation of how many credits a computer of a given class can, in average,
earn in a day. We have selected the main 200 typologies of computers that contributed to the overall recent
credits sum. This allows us to design a realistic scenario. The selected computer categories have been
grouped according to 9 macro classes, and for every class an average computing power has been calculated.

Table 1 shows for each class the number of nodes belonging to it, number of credits provided by the full
class, the number of credits provided daily by each cpu and the minimum and maximum threshold used to
assign an host to that class.

72

IADIS International Conference Applied Computing 2010

Table 1. Classification of peers according to the credits they provide to the P2P overlay

CAT. |Hosts |Recent Avg. Credits Recent Avg. Credits per Cpu [Min Rac Max Rac

A 291 410298 1409,958763 1000 2000
B 8427 6224000 738,578379 500 1000
C 34595 12683643 366,632259 250 500
D 111134 19722944 177,4699372 125 250
E 127379 10158572 79,75075954 60 125
F 180630 7655528 42,38237281 30 60
G 175426 4065000 23,17216376 15 30
H 413686 4529068 10,9480814 7,5 15
| 351955 1770492 5,030449915 0 7,5

3.3 Synthetic Representation of a Grid Workload

The next step has been the evaluation of workloads submitted to real Grid networks. For this purpose, we
exploited the data collected by the project Grid Workload Archive (http://gwa.ewi.tudelft.nl). The project
makes available traces belonging to many different grid systems, including arrival and execution time, used
resources and cpu time. Across the grid systems that are part of the project, we focused our attention on
Auvergrid (http://www.auvergrid.fr) because it is characterized by simple workload (all the jobs are
sequential) and homogeneous CPUs (all the hosts are equipped with Xeon DP 3,0 Ghz).

Table 2. Synthetic representation of Grid workload

Average
Percentage | Duration | (credits) |Jobs per minute
0,25 | < 1min 0,071141 2
0,15 | <10min 0,782551 1,2
0,15 | <100min 7,82551 1,2
0,2 | <1000min| 78,2551 1,6
0,25|<10000 |177,8525 2

4. SIMULATION RESULTS

The tool used is Java Modeling Tools[1,2]. It allows to model and simulate queue network and to collect and
represent resulting statistics. Figure 2 shows a schematic representation of the implemented queue network.

uuuuuuu

sssssss e
e

aaaaaaa

aaaaaaaa

tttttttt

Figure 2. Queue network implemented in IMT

Sources are the points where tasks are injected into the system. Stations are composed by a variable
number of servers. The simulation stops when a confidence interval of 0.95 has been obtained, with a max
relative error of 0.05. Tests were performed under different conditions and assumptions, as discussed in the
next subsections. Notice that, being the Auvergrid network rather small (450 hosts) if compared with the
resources available in the Boinc P2P overlay, we decided to feed the queue network with an increased
number of job sources, as it expected in a real system. It is equivalent, dealing with Poisson distributions, to

73

ISBN: 978-972-8939-30-4 © 20010 IADIS

multiply the arrival rate for the same factor. Tests has been performed with different multiplicative factors x.
The results presented in this paper have been obtained with x=10. A server in the model is characterized by a

set of service timel:, one for each task class.

4.1 Allocation Strategies

We have to consider that usually P2P and Grids provide a best effort service. It means that it is not possible
to foresee when a job will be scheduled and how much time it will be used for its completion. Any strategies
chosen to allocate resources to tasks could use only heuristics. The c¢ function described by (1) is
implemented Figure 3 (a,b,c).

Source 0 [Source 1 {Source 2 [Source 3 |Source 4 Source 0 |Source 1 [Source 2 |Source 3 |Source 4 Source 0 |Source 1 {Source 2 [Source 3 [Source 4
v v v v v v v v
v v v v
v \ \

<|<]<|=

N EE R NEREEE
<

BERREOEEREE
=

BERRUEREE

<|<|<|<l<]|=|<]|=
=|=|=|=l=]|=|=|=
<|<|<|<l<]|=]|<]|=
<|<]|<|<l<]|=|<]|=
=|=|=|=l=]|=|=]|=

(@ (b) (©)

Figure 3. Allocation strategies

4.2 Small Fit Allocation Strategy

In this scenario, the tasks incoming by different sources are allowed to be put in queue according to the rules
listed in Figure 3.(a). Light jobs are sent only to less powerful nodes. In the same way, heavy computational
tasks will only be queued on machines that can, theoretically, ensure an execution within a certain time. As a
general rule, we performed the simulations using two different policies (Join Shortest Queue and Join

Shortest Response). Results are shown in Figure 4.

~
s Shortest Response (s) [Shortest queue (s)
Response (s) taskO 347 218
taskl 151 237
@ Shortest task2 63 87
quete{s}) task3 27 44
|||||LIIIIIL|||H__ task4 20 20
J System average 129,25 116,9
(a) Bar chart (b) Time values

Figure 4. Task turnaround for best fit allocation

4.3 Medium Fit Allocation Strategy

Task per peer category association rule defined in Figure 3(b) make available a greater number of nodes for
the execution of light tasks. The simulation test shows a degradation of the performance for tasks belonging
to classes of jobs that had to share their peers with new less power-demanding categories. Notice that the
turnaround of tasks belonging to class 2, in this scenario, are deeply influenced by the routing algorithm. As
it is shown in Figure 5, using a Shortest Response routing the turnaround is 50% of the previous one. Using a
Shortest Queue routing, instead, the turnaround is doubled.

74

IADIS International Conference Applied Computing 2010

/
I Shortest Shortest Response (s) [Shortest queue (s)
Response (s) task0 340 238
B Shortest taskl 151 215
queue (s) task2 31 111
task3 14 64
task4 9 18
) System average 117,35 125,7

Bar chart

(@)

(b) Time values

Figure 5. Task turnaround for Medium Fit Allocation

4.4 Large Fit Allocation Strategy

The last simulated scenario, provides the behavior of the system when every peer is allowed to join a queue
of any peer belonging to any class (Figure 3(c)). In this case, it is straightforward that performances of most
power demanding jobs get dramatically worse, while the lightweight jobs benefit of a big improvement in
their performance. The values for the intermediate classes remain basically unchanged. Performance figures

are shown in Figure 6.

Il Shortest

Response Shortest Response (s) [Shortest queue (s)
— {s) taskO 453 800
] taskl 153 170
queue (s) task2 31 130
— Hmlh task3 15 4
task4 0,13 0,3
_ System average 141,1825 245,875

Bar chart

(@)

(b) Time values

Figure 6. Task turnaround for Large Fit Allocation

5. CONCLUSIONS

A preliminary analysis of experimental results let us draw some general considerations on the effectiveness
of P2P system for executing Grid workload. Firstly, a Join the shortest queue approach, despite being easier
to implement, is more influenced by the design ofrtiparameter. Comparing the first and third examples, it

is clear that the system average response time has doubled, and it is even increased by a factor 4 for the tasks
belonging to the task0. Anyway, a proper setting of the task-peer association table can lead to comparable
performances for the two routing algorithms. Another clear result is that highest and lowest demanding
classes are the ones most sensible to the dimensioning of the number of servers n, while middle classes
receive a lower impact by it. By a qualitative point of view is quite predictable if we consider the taskO and
task4 : increasing n, jobs of taskO will have to share the suitable peers with jobs of the other classes, while
not having more peers added to their list. On the other hand, tasks of task4 will be able to join the queues of
more peers, instead of be limited to overcrowded and slower hosts. Furthermore, only for simulations, we
assumed that there were not failures due to fault or to unexpected disconnections.

Future works will lighten some limitations of the model: communication among peers, the time needed to
discover on-line servers, a finer control of the number of server that will be less than all the ones belonging to
the same class. We are investigating dynamic scheduling for this kind of environments because there's no
chance to foretell in advance how much time a node will be connected, collaboration among peers for the
execution of parallel job. We are extending a distributed algorithm, previously conceived in [4,13], for task
scheduling based on game theory. We also plan to evaluate some alternative approach where calls for task
execution are shared and computing nodes compete to answer.

75

ISBN: 978-972-8939-30-4 © 20010 IADIS

ACKNOWLEDGE

This work has been supported by PRIST 2009, “Fruizione assistita e context aware di siti archelogici
complessi mediante terminali mobile”, founded by Second University of Naples.

REFERENCES

1.

2.

3.

8.

9.

10

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

76

Bertoli, M.et al, 2009.Jmt: performance engineering tools for system modeling. SIGMETRICS Perform. Eval. Rev. 36,
pp 10-15

Bertoli, M. et al, 2006. Java modelling tools: an open source suite for queueing network modelling and workload
analysis. In: Proceedings of QEST 2006 Conference, Riverside, US, IEEE Press, pp 119-120

Bourgeois, J. et al, 2004. Using similarity groups to increase performance of p2p computing. In 10th Int. Euro-Par
Conference (Europar04), volume 3149 of LNCS, Springer (2004), pp 1056-1059

. Chapman, A.C. et al, 2009. Decentralised dynamic task allocation: a practical game: theoretic approach. In: AAMAS

'09: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems, Richland, SC,
International Foundation for Autonomous Agents and Multiagent Systems, pp 915-922

. Douglas Thain and Miron Livny,2003. Building Reliable Clients and Servers. In lan Foster and Carl Kesselman,

editors, The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, 2003, 2nd edition. ISBN: 1-
55860-933-4.

. Douglas, T. et al, 2005. Distributed Computing in Practice: The Condor Experience. Concurrency and Computation:

Practice and Experience, Vol. 17, No. 2-4, pages 323-356

. Drost, N. et al, 2006. Simple locality-aware co-allocation in peer-to-peer supercomputing. In: CCGRID '06:

Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid, Washington, DC, USA,
IEEE Computer Society,pp 14

Foster, 1., lamnitchi, A.,2003. On death, taxes, and the convergence of peer-to-peer and grid computing. In 2nd
International Workshop on Peer-to-Peer Systems (IPTPS03), pp 118-128

Garcia, F.D., henk Hoepman, J.,2004. Offline karma: Towards a decentralized currency for peer-to-peer and grid
applications . In Workshop on Secure Multiparty Computations

. Ghatpande, A. et al, 2008. Analysis of divisible load scheduling with result collection on heterogeneous systems.

IEICE Transactions 91-B, pp 2234-2243

Gupta, R., Sekhri, V., Somani, A.K., 2006. Compup2p: An architecture for internet computing using peer-to-peer
networks.IEEE Trans. Parallel Distrib. Syst. 1pp 13061320

Maymounkov, P., Maziéeres, D., 2002. Kademlia: A peer-to-peer information system based on the xor metric. In:
IPTPS '01: Revised Papers from the First International Workshop on Peer-to-Peer Systems, London, UK, Springer-
Verlag, pp 53-65

Micillo, R.A. et al, 2009. A grid service for resource-to-agent allocation. In: Internet and Web Applications and
Services, International Conference on. Volume 0., Los Alamitos, CA, USA, IEEE Computer Society, pp 443-448
Pitoura, E. et al, 2003. Dbglobe: a service-oriented p2p system for global computing. SIGMOD Rec. 32, pp 77-82
Saruladha, K., Santhi, G., 2007. Behavior of agent based dynamic load balancing algorithm for heterogeneous p2p
systems. Computational Intelligence and Multimedia Applications, International Conference on 1, pp 109-113

Shudo, K. et al, 2005. P3: P2p-based middleware enabling transfer and aggregation of computational resources.
Cluster Computing and the Grid, IEEE International Symposium on, pp 259-266

Stoica, et al,2001.Chord: a scalable peer-to-peer lookup protocol for internet applitBE&GACM Trans. Netw.

11, pp 17-32

Tang, J., Zhang, M.,2006. An agent-based peer-to-peer grid computing architecture: convergence of grid and peer-to-
peer computing. In: ACSW Frontiers '06: Proceedings of the 2006 Australasian workshops on Grid computing and e-
research, Darlinghurst, Australia, Australian Computer Society, Inc., pp 33-39

Yang, X., de Veciana, G,2006.: Performance of peer-to-peer networks: service capacity and role of resource sharing
policies. Perform. Eval. 63, pp 175-194

Werthimer,D. et al, 2001. Seti@home: massively distributed computing for Seti. Computing in Science and Engg.Vol
3, pp 78-83

IADIS International Conference Applied Computing 2010

DESIGN AND DEVELOPMENT OF CONSTRUCTIVIST
EDUCATIONAL SOFTWARE TO DEAL WITH STUDENTS’
EMPIRICAL IDEAS ABOUT BASIC OPTICS CONCEPTS

Tekos George and Solomonidou Christina
University of Thessaly

ABSTRACT

The paper introduces the design and development of quality interactive multimedia educational software based on
students’ empirical ideas and conceptual difficulties, identified in Greek students 7-12 years old. The software promotes
interdisciplinary study of geometrical optics concepts. We present a survey, which investigated 40 students’ initial ideas
about light phenomena using interviews. Then we describe the design of the educational software ‘Light-Life’, which
was designed based on constructivist views of learning. The concepts analysed in this study were linear propagation of
light, shadows formation, light reflection, diffusion and refraction, synthesis of colour light beams, and vision.
Appropriate printed worksheets were also developed for the students. The proposed approach intends to improve the
quality of educational approach and tools to better respond to students’ learning with understanding and help them
reformulate their empirical ideas to better explain everyday life situations related to basic optics phenomena. In this
direction, the preliminary evaluation research had positive results regarding students’ learning with understanding.

KEYWORDS

Multimedia educational software, constructivism, primary students’ conceptions, conceptual change, optics phenomena,
interdisciplinary teaching

1. INTRODUCTION

Science education research has revealed that the majority of students enter school with pre-instructional
knowledge or beliefs about natural phenomena and concepts based on their everyday experience. Their
personal views about science phenomena integrate into students’ cognitive structures and contradict science
concepts universally accepted by the scientific community. They develop only a limited understanding of
science concepts following instruction (Driver and Oldham, 1986; Driver et al., 2000). Furthermore, it is
possible that students may apply scientific ideas in solving traditional science text-book problems in school
examinations, but not in explaining natural phenomena in everyday life (Driver, 1989; Driver et al., 2000).
So it is essential for teachers to become aware of their students’ conceptions and misunderstandings in order
to organize their teaching more effectively.

The emergence of constructivist views of learning promises to improve learning and teaching in school.
Constructivism is viewed as a theoretical perspective about knowledge construction, which may be useful to
the design of constructivist learning environments (Jonassen, 1999).

Educational software has great potential as a cognitive tool (Jonassen, 1993). Although, this offers a
powerful environment for studying formal representations, its actual contribution depends on how effectively
each task is designed in order to enhance student achievement (Bransford et al., 2000; Tekos and
Solomonidou, 2009). Conceptual difficulties are a prerequisite for designing and developing effective
instructional approaches utilizing the potential of the information and communication technology (ICT) tools.

It is necessary to investigate and take into account students’ empirical ideas before designing educational
activities and selecting appropriate ICT tools in teaching (Solomon, 1994; Osborne, 1996; Jonassen, 1999).

This study is based on the D.E.S.T.E. model (Solomonidou, 2006), which describes the steps that should
be followed to create, implement and evaluate constructivist learning environments with the use of ICT tools.
The name comes from the initials of the Greek words for Investigation, Conception, Design, Development,
and Implementation, as follows: a) Investigation of students’ initial empirical conceptions, b) Conception of

77

ISBN: 978-972-8939-30-4 © 20010 IADIS

the teaching and learning content based on both the scientific knowledge and the students’ initial empirical
conceptions and conceptual needs, c) Design of constructivist learning environments which are student-
centred, collaborative, problem solving and authentic task-based, and supported by teacher scaffolding, d)
Development and formative evaluation of the educational environment, e) Implementation of the digital
environment in the classroom and final evaluation of it based, among other things, on students’ final
conceptions and learning outcomes.

2. INVESTIGATION OF STUDENTS’ IDEAS

2.1 Previous Studies

For almost four decades there has been intensive research directed to students’ alternative conceptions
regarding light phenomena across all ages (Andersson and Karrqvist, 1983; Guesne, 1985; Galili and Hazan,
2000; Osbhorne et al., 1993; Selley, 1996; Watts, 1985).

Concerning the nature of light, students do not conceive light as a distinct entity. Some of them equate
light with a source and others with its effect. So they have difficulty in interpreting a range of light-related
phenomena (Guesne, 1985). For seeing in the darkness, students do not recognize the necessity of light and
think that it is possible to see things even if it is dark. They do not consider the presence of light as the
essential factor in order for them to see things even faintly, explaining that eyes can get used to seeing in total
darkness (Fetherstonhaugh and Treagust, 1992). They claim we can see things just ‘because our eyes have
the ability to see’ or ‘because objects are bright’ (Tiberghien et al., 1980; Andersson and Karrqvist, 1983;
Osborne et al., 1993; Ravanis et al., 2002).

Concerning light propagation students think that the distance travelled by light varied from a few
millimetres to an infinite distance. Most children decided that the distance travelled by light depended upon
whether it was day or nigliEetherstonhaugh and Treagust, 1992), and only one direction from each source,
like flash light beams (Bendall et al., 1993).

Moreover, the majority of 10 - 12 year old students think that shadow belongs only to a non-luminous
object and that always looks like the object (Feher and Rice, 1988). Students tend to believe that shadow is
not absence of light, but the presence of something tangible to which they give material characteristics
(Bendall et al., 1993). According to Galili and Hazan (2000) children perceive shadows in much the same
way as optical images. Shadows can be manipulated in the same way as independent objects.

Most of the students think that in the region of geometrical overlap there would be either lightness (full
illumination) or darkness (shadowlhey do not consider semi-darkness. Also, many children aged 11-12
believe that light stays inside a mirror or on a piece of paper when it falls on it (Guesne, 1985).

Regarding vision primary students do not believe that their eyes receive light when they look at an object.
A great number of students, generally younger ones, attribute no relationship between object, light and eye
(Osborne et al., 1993; Ravanis, 1999), in spite of the well known fact that we can see objects because of the
presence of ambient light. Other students think that we can see due to a ‘light bath’ that fills space and they
draw simple connecting lines without showing direction between the vertexes of the classical triangle:
source-object-eye (Hosson and Kaminski, 2002). Some students believe that we can see an object because the
observer directs sight lines toward the object, with light possibly emitted from the eyes (Langley et al., 1997;
Tekos, et al., 2008 Moreover, a difference between seeing luminous and non luminous objects has been
indicated (Guesne, 1985). Students might adopt an ‘active role’ of the eye emitting light and receiving light
in the case of luminous objects. Regarding colour, the majority of children think it is a property of objects,
e.g. a book is red because has the ability to be red and has no relation to light (Fetherstonhaugh et al., 1987).

2.2 0ur Study

During the year 2008-2009 we conducted the initial research with 40 Greek primary school students aged 7—
12 years aiming at (a) investigating their initial ideas about light propagation, shadows formation, light
reflection, diffusion and refraction, synthesis of colour light beams, and vision, and (b) informing the design
of appropriate educational software and other didactic material to promote a better conceptual grasp of the
subject. First, an open-ended questionnaire, with free response, was administered to 140 primary school

78

IADIS International Conference Applied Computing 2010

students (6-12 years old) in order to identify students’ empirical conceptions, which could serve as guide for
interviews. After studying the initial findings we developed four semi-structured interview protocols, each
one for students of"2grade (aged 7),"4aged 9), ¥ (aged 11), and"Bgrade (aged 12), based on students’
aternative conceptions found in the initial search. Then we conducted individual clinical-type (Piaget, 1928)
interviews with 40 students (ten of each grade). The analysis of the students’ answers allowed us to identify
the following fundamental alternative conceptions, some of which were revealed in previous studies
(Andersson and Karrgvist, 1983; Osborne et al., 1993; Ravanis et al., 2002):

1% category: A great number of students, generally fr8hgiade think that light equals both to its source
and effect, and that light is not conceived as a spatial entity propagating through space.

2" category: Students, even iff grade, think that light reflection and light diffusion are phenomena,
which happen independently of the kind of the surface light falls on. They do not know about the trajectory
of a light beam falling on a smooth surface, such as a plane mirror. Moreover, a number of students pointed
out that the light beam returns to the light source independently of the angle of incidence, and others stated
that light stays on a plane surface. Light diffusion does not happen in the atmosphere for many students, who
used to give special attributes to light rays, such as their inability to travel in space. Students also think that
earth daylight is due to the existence of the sea, ozone, etc., and not to light scattering on particles, dust, etc.

3 category: Primary students, up tB grade, conceive shadows in the same way as independent objects.
Light was associated with shadow formation, mainly in the sense that a light source was mentioned verbally.
Also, regarding the size of a shadow, they associated it with the brightness of the light source: the brighter
the light source is, the bigger the shadow formation becomes. Moreover, when students of the same age were
asked to draw the object’s shadow with the light falling on it slantwise, many of them did not put in the same
line source, object and shadow.

4" category: Students in"6grade attribute the denaturation of the objects’ shape (e.g. when a pencil is
half sunk in water) to the shape of the object or they give material characteristics to objects, rather than
different speed of light propagation into different material. Other students used refraction to mean reflection.

5" category: Regarding vision, the ‘emission model’ (the eye emits rays) is the dominating model among
4™ and %' grade students explaining how we can see non-luminous objects. Moreover, there seems to be no
awareness of the directionality of light in sight processes in younger students, who could not represent light
at all but rather illustrating the geometrical connection between the viewed object and the eye.

In order to cope with these students’ learning difficulties we developed the software ‘Light-Life’ on the
basis of these research outcomes. The software comprises visualisations, simulations, and learning activities,
having an interdisciplinary character. As a matter of fact, Optics is essentially an interdisciplinary subject.
Physics, biology, physiology, chemistry and psychology are all needed for comprehensive discussions of
optical phenomena (Feynman et dl964; Gregory, 1979; Ronchi, 1970). Moreover, as Galili and Hasan
stated, ‘optics instruction using only physics is limited and cannot confront spontaneous knowledge about
light. Such instruction cannot explain those natural phenomena which intrigue the novice |éGalgirand
Hasan, 2000, pp. 60). The instruction used in this study utilized a scaffolding process to guide the learner
from what is presently known to what is to be known. Therefore, the student engages in cognitive processes,
appropriate for the learner’s zone of proximal development (Vygotsky, 1978).

2.3 The Design of the Digital Learning Material

We have designed and developed the educational software ‘Light-Life’ using Microsoft Visual Basic 6 as an
authoring tool. The aim is to involve students in a technologically rich multimedia learning environment
posing educational tasks and to provide help and feedback while undertaking a variety of investigations.
They can come across concepts related to sound, energy, heat and related concepts, such as space, time and
change. In the activities there is also an attempt to see light in other frameworks such as those of biology,
medicine, linguistics, history, ethnography, and art. At the same time, students are encouraged to work
together on a range of situations and problems concerning light phenomena.

‘Light-Life’ is multimedia software in the sense that it presents the user with various combinations of
texts, static and moving pictures, sound, video, simulations, applets, etc. The way that the learning experience
unfolds depends on the choices made by the user as he or she navigates his/her way through the multimedia
environment. The structure of that environment is in some parts linear and in others tree-like. Along the
linear sections the user progresses along a predetermined series of stages. In the sections with a tree-like

79

ISBN: 978-972-8939-30-4 © 20010 IADIS

structure the user has access to related sections to find the information he or she seeks. There is a main menu
with seven sections, each of which takes the user to an introductory page providing access to many other
pages by activating hyperlinks of his/her choice.

More particularly, ‘Light-Life’ consists of 95 screen shots aiming to help students construct knowledge
according to the scientific accepted one, through various experiments. The software has a uniform design
throughout the forms and simple and convenient navigation panels providing an easy manipulation of it.
Specific questions are posed to students, having the following order: a) Eliciting their own interpretations or
hypotheses about the phenomena they observe, b) use of metaphors relating to common everyday situations
in order to help students construct suitable analogies, c) engaging students in activities to confirm -or not-
their initial hypothesis, and d) extract deductions about the phenomena. The software provides immediate
feedback to confront students’ alternative ideas and help them redefine their hypotheses about the light
phenomena. Moreover, it is accompanied with supplementary ‘instructional drill and practice’ activities.
Useful tool tips pop up which help students to choose the right answer. When the student chooses a wrong
answer a warning appears, pointing out that s/he has not taken into account something that had already been
elaborated in a previous section.

Regarding the software’s structure, in the first screen shot students can choose their level to go directly to
one of the following five sections: experiments, video, glossary, and important people who studied Optics.
The four levels correspond to four different school grad¥s4% 5" and &'. The material presented to the
user draws interdisciplinary concepts from the academic disciplines of Physics, Biology, Astronomy,
Technology, Art, Medicine, and Literature.

2.4 Specific Features of the Software Items

The software ‘Light-Life’ aims to cope with students’ alternative conceptions, found in the initial research
and grouped in five categories as mentioned before, by using a series of features which are the following (for
each category of students’ alternative conceptions a specific feature is described):

First category Equating light with its source and effects was identified as the most prevalent students’
initial idea among 7-8 years old students. This property of light is taken for granted in Greek school
textbooks and yet is a prerequisite for understanding light in a more advanced level (Watts, 1985), as students
do not distinguish between light as a physical entity and a sense perception stimulus.

ErE—— EEn F A=
O TG Ba nevdEen T pndka aTow Kadpt T Sneg palvero napaRdro. Mo Pug Kal PUCLKR
Siabpopl) Ba avolouBiatt) pRdla, opol KTunfoel Ty Labpégn: Taw A oy B B. Miyég dwtdg
3

iz A BT

{ o3 Ll
4
e o
Ag unolésoigie, 41 plavous éva prakde and nldyia Bion e o6 dwa Tpanéls pe Adla KortdE e Tis napakate ewves Mois vopiTete 6T napdyouy To BIke TS Pus Kal N0IEs Na(pvoUY To gus and
onpdvea. Fufnrdpe ovgy opdba pog ke anavrdpe, noas prakden Sy pdpen Ty EAfes nnyési(kduTe BNA6 KA oTis ewbves yua va peTape pBody OTIS KaTNYOpies)
S c EDE B
[] . @ Do et o7 12 vy (roy e e MG

Figure 1. Real life video and animations of a ball bouncing Figure 2. Drag-and-drop activities referritegvarious
on a Plane Surface sources of light, sound, etc.

The software ‘Light-Life’ includes the following features to cope with these students’ difficulties: A real

life video about a ball bouncing on a plane surface and animations with tennis balls bouncing on a table used
to help students construct a suitable analogy with light reflection. Students are asked to predict the ‘correct’
reflected course and then to confirm their prediction by activating the animation or the video (Figure 1).
Gradually, a torch substitutes the child who throws the ball and a light beam substitutes the ball. Also, a
number of drag-and-drop activities refer to various sources (sound, heat, energy or light sources) aiming to
help students understand that a radio speaker differs from the sound it emits, an electric burner differs from
heat, and light differs from a torch or the sun or any other light source (Figure 2).

80

IADIS International Conference Applied Computing 2010

Moreover, in another screen shot aiming to study the linear propagation of light, we use the following
analogy: the student is asked to choose the shortest route a child must take to reach a given destination, i.e. a
straight line. Then the child is replaced by a torch and a light beam falls on the spot that was previously the
child’s destination.

Second categoryThe initial students’ answers showed that they do not distinguish between the kinds of
surface on which they can observe light reflection and diffusion phenomena (i.e. plane mirror, cloth, shiny
marble, ground, dust, etc.). Also they do not know about the trajectory of a light beam falling on a smooth
surface such as a plane mirror. Moreover, a number of students pointed out that the light beam returns to the
light source independently of the angle of incidence, and other ones stated that light stays on a plane surface.
A number of activities with ‘Light-Life’ may engage students to observe the phenomena of light reflection
and diffusion on different kinds of surface (Figure 3). The amount of light and the way it reflects on an object
largely depends upon the smoothness or texture of its surface.

1. Ze nola Béom Ba npéneL va 1. Ze nowa 8¢omn Ba npéner va
Tonobetfigoupe To SapavTdx @yia va m’ v / TonoeTfgovpe TO SlauavTdK @yia va ﬂ-‘ v /
potwoTel ané To paxdé; Irn Béon aornp 1 _’_ potigrel ané To gaxs; Etn 8éan actnp 5 o) _’_
f otny: a ttom f omny: a avésdaone | nosormwons s
& niva e @ pa
Ams 10 paxd va rééwnmt‘?srs&ﬂupu;lwzgm g Amz TO paxd va Té&wnm?ﬂsa.gﬂapﬂngm g
G Nou ey paTZovTal and T Séopn $uTéG Nou ' Nou e TZ ovraL and T Béopn e ou
népre (npoonintouca) kat and T SEon guTég nou nég et (pooninTouda) Kat and T Séapn TG now
avarhdTat {ovakhOpEn). TN OUVERELD KAVTE KNK OTO. QVaRAGTL (QvOKAMGUEN). Z TN OUYENE KAVTE KhiK OTO
YEQUETPUS | Kal pETé oTrY Unep Y 7‘ N eTd oty ?‘ N
i
ooy recrry
Tunapatnpeite;
O1 yuvieg efvay Ouyuvleg elyaw
(oeEC pETAED &VioeC PETAED
Toug: m Toug:
’SF m MOAY EQETA! ’SF 1]

Figure 3.The path of a light beam interacting with an object is demonstrated by turning on the light source simulating the
relevant phenomenon considering the angle of incidence

When the surface imperfections are smaller light reflects according to the Law of Reflection. Also,
students can activate the applet http://micro.magnet.fsu.edu/primer/java/reflection/specular/indekictml,
initializes with a beam of white light being refledten a plane or rough surface demonstrating diffuse
reflection. They can use slider bars to adjust the texture of the surface appearing in the window between a
range of 0 percent (smooth) and 100 percent (maximum roughness).

Third category In order to cope with students’ misunderstandings about shadows the software ‘Light-
Life’ includes the following features: For th&'gjrade there are the following sub-sections.

Sun and night and day alteratioiStudents go on a virtual journey into space to a point from which they
can observe the earth in relation to the sun. They are asked to make hypotheses about the reason they see the
earth half in darkness and half in light. They can also change the position of the earth in relation to the sun to
observe the change in brightness of an area of the earth.

Light and art: This subsection includes shadow-creating games and other activities aiming to identify the
objects that correspond to a series of shadows and also to give the correct orientation of the object's shadow
in relation to the object and the light source (Figure 4, 5).

For the 4" grade, students can carry out some virtual experiments on the orientation of sféEidaves
6). The students are asked to predict where the shadow of an object will be formed, in one case with one light
source and in another with two light sources. They can then test their predictions by switching on the virtual
light sources, overturning any misconceptions they may previously have had. The initial investigations
showed that students assumed that the size of a shadow would be relative to the brightness of the light source.

81

ISBN: 978-972-8939-30-4 © 20010 IADIS

=l
H 7ep1oTpo@i) T1)S 7115 YOP® U6 Tov A0 TPOKUAEL TV AVATOM] Ka1 5V6T) TOV 111100 Mid pépa pe
NAOQaVELE PTOPOTILE Ve SOVIE T1] GKIE TOV TPOKUAEL TO PO TOV IOV GF UVTIKEINEVY. 6TOG TU BEVTPO
STIY TAPUKGT® EWK6VE. MTOPEITE va BGAETE TIY GPU 6TO KATGAMLO TAUIGI0, GTV TEPLOYT] OV 00
snpovpyN0zi 1 oKL TOV BEvipou;

Dag Kal TEXVR
©. Pag Kal OKIA

02 apupioes w axii ow Bpoupysiea oo o
VenavTixes ki 1 ypiodRa Maope(va
a7 har

ANATOAH

|

MoXU cwotd! H okid nploupyeitat petd and to
BévTpo oTnV npoé) Tns eudeiag f: EvTp

Figure 4. Activities aiming to identify the objects that Figure 5. Giving the right orientation of the object’s
correspond to their shadows shadow

The next screen shot allows students to test this very own hypothetical ¢madeimy-model’, see
Raghavan and Glasef,999, encouraging them to question their primitive idaasl help them adopt the
scientific model. They can also activate an applet changing the distance of a light source from an object to
investigate the way this changes the size of the shéEigure 7)

pra— AR
2TV NEWPAapaTIKG Ndyko undpxet éva KOUT Kat 5Uo pakol. TONOBETAOTE TO KOUTI NpGTa oTo ZKIEZ (2)
TPANECL KAl OTN GUYEXELX TO §aKG 1 Kal ENELTA Ta ¢aKs 2 KAVOYTAG KAK Ndve Toug Mua nopéa nadudv KGOETaL o€ Eva BupdTio EpNp6E and pia AGPNa Kat oTov anévavtt Tofxo

oxnuaTiZeTal n oK Toug
BAEnouy TN oKid ToUG Kat okEY Tponoug yia va T Mnopeite va Toug PonorveTe:
TunpéneL va kdvouv:

~ A Napafouy jua fiin Aduna nio Suvati, ue no £viovo
gus

< B. Na gépouv T Adpna nio kovtd Tous f va ninodoouy
S | T T SETEET
i BnuLoy; o e.,(,s & B $aKé2 néoeg oKEG Ba

PO I SnpLoupynBoty. © T Na Badoww 2 Adpncs

CMIA C AYO C KAMIA I MIA 7 AYO I KAMIA

2.5€ nowd nAeupd 6a 4.5€ nowd nheupd Ba B
SnpLoupynOel oKid: SnpLoupynBEl oKid:

BRI G St ouvéxew avdyte To
$aKé1 Kat napatnprioTte
T oupBaiver

$aK62 KaL napatnprioTe
5. Av avdyeTe Kat Toug T ouppaiver B O G

Em:rlgaq‘ ;‘521"“ P / SUOGZuETLﬂﬁlT:;]%gDZSég . afifGEoupe Ty évraon s PuTEwis Nyils
onéa1 © MIA C AYO [Fuvends yua va adddEoupe To péyeBos s oxds Ba npénel va
7T ouvERELa avaYTE TOUG §aKodS Daxbs2 \ T o o) e S T ey
Kal napatnpote TL ouppaiver ZYNEXEIA Emorpomi om I Kot 4" |
e
Figure 6.Virtual experiments looking at the orientation of ~ Figure 7.Activating the appletestingthe size of the
shadows shadow

Fourth categoryOur initial research indicated that the majority of theafid &' grade students believed
that refraction was due to some property of objects themselves. When asked about the change in the
appearance of a pencil when it is partly submerged in a glass of water, they attributed this to the shape of the
pencil itself. ‘Light-Life’ includes the following features to help students confront and re-evaluate these
initial conceptions. In the first instance students can formulate their own interpretation for the phenomenon of
refraction as they can observe the change in the appearance of a pencil submerged in a glass of water. After
that, they are engaged in a virtual experiment in which they fill a tank with water and see how the route taken
by the light ray is changed as it comes in the water (Figure 8). Aiming to help students construct a suitable
analogy, the next screen shot presents a hypothetical scenario in which they must choose the quickest route
which a lifeguard in a swimming pool must take to reach an individual who is at risk of drowning (see
Hewitt, 1997). They see that the lifeguard will reach the individual in distress quicker not by taking a direct
route but by running further along the pool so that the distance he has to swim is kept to an absolute
minimum, bearing in mind that the lifeguard can run faster than he can swim (Figure 8). After formulating
their own hypotheses, the students can activate the scene to compare the time taken for the lifeguard to
follow the two possible routes. They are also able to watch an applet on the internet (http://micro.magnet.fsu.
edu/primer/java/particleorwave/refraction/index.html), where they can observe how the course of a light ray
alters as it passes from a medium to a denser one. Finally, the students are prompted to draw their
conclusions about the refraction phenomenon and reconsider the answers they gave to the question initially.

Fifth category From our initial research it seemed that children aged 10 and 11 had no awareness of the
directionality of light in sight processes, and instead of representing light they drew a geometrical connection
between the eye and the viewed object. Also, when we asked students to show the direction of the light beam

82

IADIS International Conference Applied Computing 2010

in the classical triangle (observer’s eye, light lamp, object) on their worksheets, the emission model was the
dominant model in their drawings. In order to cope with these students’ alternative ideas the software ‘Light-
Life’ provides animated graphic renditions, representations of vision, which depict the directionality of light.
Bearing in mind that a single arrow is highly schematic and thus might not be representative enough of the
idea of light transmission, multiple arrows were used to represent light emanating from a seen object, some
of them reaching the eye. In a drawing, showing a child watching a flower, students were asked to predict the
direction of light by choosing the correct arrows and then to test their hypothesis by activating the animation.

~ Md@Aaon
Al| MEoa o éva Gdet0 noTript plokeTat éva poAGBLPIETE YEPS PERPL TN PEON TOU NOTNPIOG
eysve o g

~ Form47
A3 YnoBEote 6L évag vavayooGotng BEAEL va THEEEL yia va odoeL kdnooy _Andu
nou nviyetat otn nuoiva. Mol propei va TpéEeL ypnyop6Tepa, oTn ENPA f
oTo veps:

Mefpapa
TunapaTnpe(te;

(Andvnon

Sugnthote otny oudSa oag kat BGoTE T Bk 00g Eppnvela vt aUTS nou oupfaiver
\\ Eppnveia

&
A2| Aviyee o gas e va guTioTel N neTpodAX U PpokeTal oTo MUY Tou KeYoU svuBpeiou. T apaTnpstre

|Anannon

3T OUYEXEW NAPTE To BOKE(O E TO VEPS Kat YEWIOTE T evubpe(o. Tt napatnpeite:

|Anavmon

o va eéyEeTe
Mol BLaBPOpT] BEPELTE 6TL 4 pupens o TNY GMOYA 0TG
npéneL va kdveL yua va gTdoet natfote

B Awabpoury
OUvTO6TEpa OOV dvBpunio; Bhetei |

0 vavayoaiaTne Sadéyet T Sadpou] nov sivat aw Enpd ket
ato vepd ensiaTf Apoxypd e

tapiTgra oy Enpd an G ot vepd

| e
™ 4 m—
| AB| ZupnépacpaXpnotonowévrag Tic napakdte MEELS BlaTUNGoTe To oupNEpasha.
0C. Slagavec UMKS, ot dhro Slagavéc, nopeia. S1dora AYGEYO
2 = i i]
Figure 80bserving the phenomenon of refraction Figuktypothetical scenario with the lifeguard

3. CONCLUSION

‘Light-Life’ is multimedia educational software that was developed as a tool for enhancing students’ learning
with understanding and teaching of geometrical Optics mainly in primary education. The initial research with
40 students using clinical interviews revealed their alternative conceptions (grouped in five categories), on
which we were based to design this software. It comprises many characteristics, aiming to cope with
students’ alternative conceptions and to help them construct appropriate knowledge. The software’s main
characteristics are students’ engagement in real problem solving activities, prediction and testing of
hypotheses, creating and comparing their own models with the scientific ones, simulations of real life
situations. In order to bridge the ‘zone of proximal development’ (Vygotsky, 1978), we provide scaffolding
by referring to common everyday situations, providing challenging authentic activities requiring reflective
thinking to construct a suitable analogy, and also providing students with opportunities to work in
collaborative groups. Students do not process the full complexity of the problem from the very beginning, but
face a simpler version of it. So, scaffolding takes place and students achieve better learning outcomes. Basic
regularities provided by the software allow students to recode the information pertaining to the complex
problem. We thereby aim to lead students to successful reformulation, and explanations of daily problems.

We made a preliminary research on the evaluation of the software by using it in a primary classroom with
23 6" grade students. The results of this initial study are very encouraging, as the students found the software
easy to use and achieved good learning results. The next step is to use of the software in more than one class
and over a range of different grades. This study will allow us to test the effectiveness of the software using a
larger sample of students and compare those outcomes with the outcomes achieved using more traditional
teaching methods. Such an evaluation should be of significant assistance to teachers who seek to improve
their teaching, to designers of educational software, and to those looking to improve both the teaching
materials and methods for these areas of education.

REFERENCES

Andersson, B. and Karrgvist, C., 1983. How Swedish pupils, aged 12-15 years, understand light and its properties.
European Journal of Science Educatidfal. 5, No 4, pp 387—402.

Bendall, S. et al., 1993. Prospective elementary school teachers’ prior knowledge abodbligtel of Research in
Sdence TeachingVol. 30, pp 1169-1187.

83

ISBN: 978-972-8939-30-4 © 20010 IADIS

Bransford, J. et al., 2008low people learn: brain, mind, experience, and schédshington, D.C., National Academy
Press.

Driver, R., 1989. Students’ conceptions and the learning of scibriemational Journal of. Science Educatjovol.
11, No .5, pp 481-490.

Driver, R. et al., 2000. Makingense of secondary science: research into children’s idR@asledge, London

Driver, R. and Oldham, V. 1986. A constructivist approach to curriculum development in s@amties in Science
Education,Vol. 13, pp. 105-122.

Feher, E. and Rice, K., 1988. Shadows and anti-images: Children's conceptions of light an&eisime Educatign
Vol. 72, No. 5, pp. 637-649.

Fetherstonhaughl. et al., 1987. Student alternative conceptions abght: A comparative study of prevalent views
found in Western Australia, France, New Zealand, Sweden and the United R&stearch in Science Education,
Vol. 17, pp. 156-164.

Fetherstonhaugh, T. and Treagust D.F., 1992. Students’ understanding of light and its properties: teaching to engender
conceptual chang&cience Educatign/ol. 76, No 6, pp. 653-672.

Feynman, et al., 196Fhe Feynman lectures on physiBeading, MA: Addison-Wesley.

Galili, I. and Hazan, A., 2000. Learners’ knowledge in optics: interpretation, structure and ahdbysiational Journal
of Science EducatioNvol. 22, No. 1 pp. 57-88.

Gregory, R.L., 197%ye and BrainPrinceton. NJ: Princeton University Press.

Guesne, E., 1985. Light. In R. Driver, E. Guesne & A. Tiberghien (EHildren’s Ideas in Sciencép. 10-32)
Philadelphia: Open University Press.

Hewitt, P., 1997 Physics Concepid) (E. Sifaki, trad.). Heraklion: University Publications of Crete (in Greek).

Hosson, C. and Kaminski W., 2002. Les yeux des enfants sont-ils des ‘porte-luidtetih de I'union des physiciens
Vol. 840, pp.143-160.

Jonassen, D.H., 1998omputers in the Classroom: Mindtools for Critical Thinkittnglewood Cliffs, New Jersey,
Prentice Hall.

Jonassen, D.H., 1999. Designing constructivist learning environments. In: Reigeluth CMné&digtional-Design
Theories and Modelwol Il pp. 215-239. Lawrence Erlbaum Associates, New Jersey.

Langley, D. et al., 1997. Light propagation and visual patterns: pre-instruction learners’ concéptiored.of Research
in Science Teachiny,ol. 34, No. 4, pp. 399-424.

Osborne, J.F., 1996. Beyond constructiviStience Educatiowol. 80, pp.53-82.

Osborne, J. et al., 1993. Young children’s (7—11) ideas about light and their develojmesnational Journal of.
Science Education/ol 15. No. 1, pp 83-93.

Piaget, J. (1928)Yhe Child's Conception of the Worlcondon: Routledge and Kegan Paul.

Raghavan, K. and Glaser, R., 1995. Model-based asaysi reasoning in science: The MARS curriculBunience
Education Vol. 79, pp. 37-61.

Rawanis, K., 1999. Représentations des éléves de I'école maternelle: le concept de llnt@igetional Journal of Early
ChildhoodVol. 31, No. 1, pp. 48-53.

Ravanis, K. et al., 2002. Social marking and conceptual change: the conception of light for ten-year old Jdnilarain.
of Science Educatioi,ol 3, No 1, pp. 15-18.

Ronchi, V., 1970The Nature of LightCambridge, MA: Harvard University Press.

Selley, N.F., 1996. Children’s ideas on light and visioternational Journal of Science Educatidfl. 18, No. 6, pp.
713-723.

Solomon, J., 1994. The rise and fall of constructiviStudies in Science Educativiol. 23, No. 1, pp. 1-19.

Solomonidou, C., 2008Newtrends in educational technology. Constructivism and new learning environn¢mess:
Metaihmio editions (in Greek).

Tekos, G. et al., 2008, Teaching light reflection and diffusion using constructivist digital tools and methods in Greek
primary schoalED-MEDIA AACE, Luka, J. and Weippl E. (Ed), Vienna, Austria, pp.138-139.

Tekos, G. and Solomonidou, C., 2009. Constructivist learning and teaching of Optics concepts using ICT tools in Greek
primary school: A pilot studylournal of Science Education and Technoldgyl, 18, No. 3, pp. 415-428.

Tiberghien, A. et al., 1980. Conceptions de la lumiére chez I'enfant de 10-1Reane Francaise de Pédagogdial.
50, 24-41.

Vygotsky, L.S., 1978Mind in society: the development of higher psychological processes. Cambridge: Harvard
University Press.

Watts, M., 1985. Student conceptions of light: a case sRitysics EducatioriVol. 20, pp. 183-187.

84

IADIS International Conference Applied Computing 2010

A METHODOLOGY FOR ENGINEERING REAL-TIME
INTERACTIVE MULTIMEDIA APPLICATIONS ON
SERVICE ORIENTED INFRASTRUCTURES

Dimosthenis Kyriazis', Ralf Einhorn?, Lars Fiirst’, Michael Braitmaier®, Dominik Lamp®, Kleopatra
Konstanteli*, George Kousiouris', Andreas Menychtas®, Eduardo Oliveros®,
Neil Loughran®and Bassem Nasser®
!National Technical University of Athens
Tixeltec
®University of Stuttgart
*Telefonica Investigation e Disarollo
SSINTEF
SUniversity of Southampton IT Innovation Centre

ABSTRACT

Future Internet applications raise the need for environments that can facilitate real-time and interactivity without major
modifications in the application domain. Such environments should be able to efficiently adapt resource provisioning to
the dynamic demands of the applications, the majority of which tends to be real-time and interactive. In principle, all
applications are suitable to be executed in service oriented environments as they are, without any kind of adaptation or
modification. Nevertheless, the concrete characteristics of emerging infrastructures, mainly focused on guaranteeing the
offered quality of service, require specific steps to be performed by the application developers and adopters in order to
exploit the maximum of the infrastructure offerings. In this paper, we present a methodology for creating or adapting
real-time interactive multimedia applications for service oriented infrastructures.

KEYWORDS

Service-oriented Infrastructures, Cloud computing, Quality of Service, Real-time

1. INTRODUCTION

Service Oriented Architectures (SOAs) [1] refer to a specific architectural paradigm that emphasizes
implementation of components as modular services that can be discovered and used by clients.
Infrastructures based on the SOA principles are called Service Oriented Infrastructures (SOIs). Through the
agility, scalability, elasticity, rapid self-service provisioning and virtualization of hardware, Service Oriented
Architecture principles are reflected into Clouds, which provide the ability to efficiently adapt resource
provisioning to the dynamic demands of Internet users. Many architectural paradigms from distributed
computing such as service-oriented infrastructures, Grids and virtualisation are incorporated into Clouds.
There are three main classes in the cloud services stack which are generally agreed upon [2]:

e Infrastructure as a Service (1aaS), which refers to the provision of ‘raw’ machines (servers, storage,
networking and other devices) on which the service consumers deploy their own software (usually as virtual
machine images).

e Platform as a Service (PaaS), which refers to the provision of a development platform and
environment providing services and storage, hosted in the cloud.

e Software as a Service (SaaS), which refers to the provision of an application as a service over the
Internet or distributed environment.

In this paper we focus on the SaaS class, presenting a methodology for adapting real-time interactive
multimedia applications for cloud-based service oriented infrastructures. Before we continue, let us clarify
the term “real-time”. Traditionally, ‘real time’ refers to hard real-time systems, where even a single violation

85

ISBN: 978-972-8939-30-4 © 20010 IADIS

of the desired timing behaviour is not acceptable, for example because it leads to total failure, possibly
causing loss of human lives. However, there is also a wide range of applications that also have stringent
timing and performance needs, but for which some deviations in Quality of Service (QoS) are acceptable,
provided these are well understood and carefully managed. These are soft real-time applications and include
a broad class of interactive and collaborative tools and environments, including concurrent design and
visualization in the engineering sector, media production in the creative industries, and multi-user virtual
environments in education and gaming. In particular, we focus on interactive soft real time applications
where one or more users interact with the application and with each other.

Soft real-time applications are traditionally developed without any real-time methodology or run-time
support from the infrastructure on which they run. The result is that either expensive and dedicated hardware
has to be purchased to ensure good interactivity levels and performance, or that general-purpose resources are
used as a compromise (e.g. commaodity operating systems and Internet networking) with no way to guarantee
or control the behaviour of the application as a result. In this paper, we present a methodology, being
developed in the European Commission supported IRMOS project [3], for application developers describing
how to use specific tools during various phases of the application development process. The outcome of this
process is soft real-time applications that can be executed on Service Oriented Infrastructures (SOIs) with
guaranteed quality levels. The proposed adaptation enables the PaaS providers to utilize techniques for
modelling, predicting, provisioning and monitoring resource and QoS requirements commitments and thus
allowing real-time interactive multimedia applications to be executed on SOls.

The aforementioned applications consist of Application Components (ACs) and are described by an
Application Description (AD) that includes their functional parameters. The ACs are software components
actually providing functionality and can be: a) Application Service Components (ASCs) that run
autonomously and are deployed inside the virtualized infrastructure, e.g. an image renderer, b) External ASCs
(EASCs) — same as ASCs but run outside the virtualized infrastructure because they offer non-standard,
“non-virtualizable” functionality, e.g. a GPU processing node, ¢) Application Client Components (ACCs) —
the software used by an end-user (client) to access the application — always running outside the virtualized
infrastructure. The ACs are described by a document containing everything that is needed (e.g. resource
needs and functional parameters) to run the ASC on the SOI. This is called Application Service Component
Description (ASCD).

The remainder of the paper is structured as follows: Section 2 gives an overview on characteristics of
potential applications and first generic (i.e. independent of the SOI) steps to be done for preparation, while
Section 3 focuses on the steps needed for integration and adaptation the applications to a real-time aware
cloud-based platform (e.g. IRMOS) and available tools helping the developer on this task. The functional and
descriptive interfaces used in these processes are described in Section 4. The paper concludes with a
discussion on future research and potentials for the current study.

2. THE FOUNDATION: AN APPLICATION

Basically there are two possibilities to create an application that will run on a service oriented infrastructure:

e Pre-existing applications can be adapted to run on it (“adaptation”).

e New applications developed tailored to the infrastructure (“green field development”).

Instead of running on dedicated physical hosts, the service parts of the applications run on Virtual
Machine Units (VMUSs) within a virtualized infrastructure provided by the laaS provider, an example of
which is Intelligent Service Oriented Network Infrastructure — ISONI [4].

In principle, all server applications are suitable to be executed in the cloud-based environment as they are,
without any kind of adaptation or modification. But the concrete characteristics of platforms that facilitate
real-time and interactivity, make applications that require live interactions among their users or which are
infrastructure demanding (in terms of CPU, network or storage usage) more appropriate for such platforms.

Applications that require scaling resources or have changing use patterns over time require adaptation of
the infrastructure according to the specific usage periods and reservation of more or less resources depending
on the load in each moment. In other cases, there are applications that not only have important requirements
in terms of resource usage and depend on reliable resources but also need QoS guarantees. IRMOS platform
is considered to be suitable for the aforementioned applications by allowing both for interactivity but also for

86

IADIS International Conference Applied Computing 2010

QoS guarantees across a virtualized infrastructure. The design provides certain advantages in relation to
different aspects related with security, as for instance: the isolation during execution from other ap