

Proposed Design and Implementation for
RESTful Web Server

Mou’ath Hourani, Qusai Shambour, Ahmad Al-Zubidy and Ali Al-Smadi
Software Engineering Department, Faculty of Information Technology

Al-Ahliyya Amman University, PO Box 19328, Amman, Jordan
{mouath.hourani@ammanu.edu.jo}, {Q.Shambour@ammanu.edu.jo}{a.jonline@yahoo.com}, {ali.a-

smadi@hotmail.com}

Abstract— In this paper, we propose a framework to design
and implement a novel RESTful Web server architecture.
The proposed RESTful Web server architecture is a
lightweight server that will be less taxing on system
resources and will therefore handle a greater volume of
requests. Furthermore, in contrast to the usual servers that
supports most websites, the proposed RESTful Web server
architecture is used for hosting RESTful-based Web
Services. Moreover, the results obtained from our
experiments show that the proposed architecture
demonstrates high performance while maintaining proper
stability. Our Web server is programmed in Java using a
simple yet flexible web application framework that fulfills
the needs of modern web application development. It also
provides developers with a rapid and cost-effective method
for implementing, deploying and serving a web API
(Application Programming Interface).

Index Terms—Service-Oriented Architecture (SOA), REST,
RESTful, Web Server, Web Services, Web API.

I. INTRODUCTION

Software architecture is an abstraction of the run-time
elements of a software system. It can be defined by the
configuration of its elements. Such elements (components,
connectors, and data) are constrained in their function and
relationships in order to achieve a required set of
architectural properties (e.g., scalability, reliability,
reusability) [1]. A coordinated set of such architectural
constraints is called an architectural style [1].

Web service based applications have been widely
applied in a variety of domains with the development of
Service-oriented architecture (SOA) [2, 3]. SOA is an
architectural style that guides all aspects of creating and
using services throughout their lifecycle, as well as
defining and providing the infrastructure that allows
heterogeneous applications to exchange data. This
communication usually involves the involvement in
business processes, which are loosely coupled to their
underlying implementations. SOA represents a model in
which functionality is decomposed into separate units
(services) that can be spread over a network and can be
united together and reused to create business applications
[4]. SOA allows the creation of systems using reusable
components with well-defined service interfaces, these

components can be published as discoverable services
over the Internet based on their capabilities [5]. Ninety-
two percent of companies say their SOA initiatives met or
exceeded business unit objectives, while only eight
percent say they did not. Additionally, SOA market is
growing 17% a year to reach $10 billion by 2015 [6].

Currently, two architectural styles are commonly
discussed in the context of SOA: firstly, the Simple
Object-Access Protocol (SOAP) styles and related
standards (e.g., WSDL). Secondly, styles based on the
Representational State Transfer (REST) with loosely
coupled designs similar to resources of the World Wide
Web. Although the REST vs. SOAP debate is mostly
ignored in academia, the SOA community is still arguing
about the pros and cons of each style [1, 7-9]. However,
REST’s simplicity, beside its natural fit over HTTP, has
contributed to its status as the best method to achieve a
desired result for Web 2.0 applications in terms of
exposing their data [10].

The REST style architecture is a main contributor to
the Web’s success. REST describes how the web as a
large scale distributed hypermedia systems, have to
operate to make the most of beneficial properties,
including scalability, modifiability, performance,
simplicity, and reliability. To retain usability in the face
of increasing growth and expansion into new domains,
the Web must maintain the benefits of the RESTful
design. However, even though REST principles have
been known for more than a decade, developing systems
that conform to them is difficult [11].

In this paper, we propose a framework architecture to
design and implement a RESTful Web server that
conforms to REST constraints/principles. The proposed
RESTful Web server as a lightweight server will be able
to handle more requests since it is less taxing on system
resources, and provides high performance, and stability.
This paper is organized as follows. Section 2 provides
background information on REST style architecture and
an overview of the most popular Web servers. In Section
3, we propose our RESTful Web server including its
structure, requirements and components. Section 4
illustrates the evaluation and results. Finally, conclusions
and directions for future study are provided in Section 5.

II. BACKGROUND AND LITERATURE REVIEW

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1071

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.5.1071-1080

Cop
y R

igh
ts

This section reviews literature related to this study.
First, an overview of the REST style architecture is
presented. We then provide a review of its benefits.
Finally, an overview of the most popular Web servers is
presented.

A. REST-Style Architecture
REST style architecture consists of clients and servers.

Clients initiate requests and servers process them and
return responses. Requests and responses are built around
the transfer of resources' representations [1, 12]. A
resource can be any meaningful information that can be
named. A representation of a resource is a document that
captures the intended state of a resource [1, 12]. REST
style architecture addresses four main goals [1, 12]:

• Scalability of component interactions;
• Generality of interfaces;
• Independent deployment of components; and
• Intermediary components to reduce interaction

latency, enforce security, and encapsulate legacy
systems.

REST achieves these goals by implementing the
following principles [1, 12-14], which are:

1. Client-Server
Separation of concerns is the principle behind the

client-server constraints in which clients are separated
from servers by a uniform interface. By separating the
user interface concerns from the data storage concerns,
the portability of the user interface across multiple
platforms is improved. Also, this improves the servers'
scalability.

2. Stateless
The concept of stateless means that the client-server

communication is constrained by no client context being
stored on the server between requests. Each client request
has to be fully self-descriptive, is considered in isolation,
and is interpreted only in context of the current resource
state. Application state is maintained by the clients. This
makes servers more visible for monitoring and more
reliable in the face of network failures.

3. Cacheable
Clients are able to cache responses in order to improve

network efficiency. Cache constraints require that the
data within a response to a request be implicitly or
explicitly defined as cacheable or non-cacheable to
prevent clients reusing inappropriate data in response to
further requests. If a response is cacheable, then a client
cache is given the right to reuse that response data for
later, equivalent requests. This constraint improves
scalability and performance.

4. Layered system
The layered system style allows an architecture to be

composed of hierarchical layers by constraining
component behavior such that each component cannot
“see” beyond the immediate layer with which they are
interacting. Intermediaries can also be used to improve
system scalability by enabling load balancing of services

across multiple networks and processors. They may also
enforce security policies.

5. Uniform Interface
The concept of the Uniform Interface explicates that

all communication between client and the server is
conducted using the fixed operation set provided by
HTTP: GET, PUT, POST, DELETE. A GET method
retrieves the current representation of the requested
resource from the server to the client. The PUT method
allows the client to change the state of the resource by
modifying its representation and transferring it back to
the server. The POST method creates a resource on the
server. DELETE removes a resource from the server.

Fulfilling these REST style architectural constraints
will enable any kind of distributed hypermedia system to
have desirable evolving properties, such as performance,
scalability, simplicity, modifiability, visibility, portability
and reliability. In addition, conforming to the above
constraints is generally referred to as being “RESTful”. If
a service violates any of the required constraints, it
cannot be considered RESTful [1, 12-14].
B. Benefits of the REST-Style Architecture

The main benefits of REST style architecture are [15-
19]:

• The REST it is a simple yet effective technology
that can be used to create web services. Without
needing any toolkit, developers need to know the
Hypertext Transfer Protocol (HTTP), HyperText
Markup Language (HTML) and Extensible
Markup Language (XML) in order to implement
web services.

• Also, using standard formats as HTML or XML
ensures compatibility over time.

• Requests and responses through the REST
interface can be short. Thus, in terms of bandwidth
usage, REST is light.

• REST developers can easily create and modify an
URI to access different Web resources.

• With the support for caching, REST provides
improved response times and server loadings due
to the totally stateless operation of the REST
approach.

• By reducing the need to maintain communication
state, REST improves server scalability. This
means that initial and subsequent requests can be
handled in different servers.

• Since a single browser can access any resource
and application, REST demands less client-side
software to be written than other approaches.

• With the use of hyperlinks in content, a separate
resource discovery mechanism is not needed.

• Less memory consumption than others.
• Possibility to distribute queries across more than

one server.
In terms of testing and troubleshooting. It is easy to

test and troubleshoot an HTTP REST API since one can
construct a call with nothing more than a browser and
check the response inside the browser window itself. No

1072 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

Cop
y R

igh
ts

troubleshooting tools are required to generate a request /
response cycle.

C. Related Literature: Most Popular Web Servers
According to the Septemper 2013 Netcraft Web Server

Survey (http://news.netcraft.com/archives/category/web-
server-survey/), three servers are currently widely used
on the Web: the Apache Server from the Apache
Software Foundation (http://httpd.apache.org/), Internet
Information Server (IIS) from Microsoft
(http://www.iis.net/) and the Nginx Web Server
(http://nginx.org/). Apache is the first most popular Web
Server in the world with a market share of 47%. IIS is the
second most popular Web Server with a market share of
22%, whereas the Nginx come in the third place with a
market share of 15%. However, this doesn’t
automatically mean that Apache is better than other Web
servers. A reason might be that Apache has been around
longer than others, giving Apache an edge since it’s
already been integrated into a lot of systems.

Apache is the most popular Web server and one of the
most successful open-source projects of all time. Apache
has proven to be a very stable, scalable, secure, cross-
platform, and flexible Web server in which it facilitates
interface customization. However, its configuration
process is complicated and requires profound special
knowledge. Additionally, there are Web servers that are
more lightweight and faster than Apache. Although
Apache scales well and can handle high loads, other Web
servers might be more appropriate for serving pure static
content [20, 21].

Unlike Apache which is a free open-source Web server,
Internet Information Server (IIS) is a Web server created
by Microsoft in which it comes with the server versions
of Windows and cannot be downloaded separately. IIS
has a modular architecture. Modules, also called
extensions, can be added or removed individually so that
only modules required for specific functionality have to
be installed. IIS includes native modules as part of the
full installation. These modules are individual features
that the server uses to process requests. In addition, IIS
includes enhanced security features. These features are:
client certificate mapping, IP security, request filtering
and URL authorization. However, IIS runs only on
Windows unlike Apache which runs on almost every
operating system [22].

Although Apache is an excellent open-source Web
server, Nginx Web server can be considered as an
alternative with the same functionality, a simpler
configuration, better performance and efficiency. Nginx
is a high-performance Web server and reverse proxy
designed to use very few system resources. Nginx was
first conceived to be an HTTP server. It was created by
Igor Sysoev to solve the C10K problem, described by
Daniel Kegel at http://www.kegel.com/c10k.html, of
designing a Web server to handle 10,000 simultaneous
connections. Nginx is able to do this through its event-
based connection-handling mechanism, and will use the
OS-appropriate event mechanism in order to achieve this
goal. Like Apache, Nginx is used by some of the largest
Web sites in the US, including WordPress, Hulu and

MochiMedia. Nginx is the third-most-popular Web server,
and it is currently serving more than 112 million Web
sites [23, 24].

III. THE PROPOSED RESTFUL WEB SERVER
ARCHITECTURE

Although there are many widely available RESTful
web service API’s in java and other programming
languages (e.g, Jersey, JBoss and Restlet), which
eventually lead to RESTful web services complying with
the main REST constraints [11, 13, 25, 26], however, (1)
developing RESTful web services is still a key challenge
due to the lack of software development frameworks that
support all REST constraints; (2) most of the RESTful
web services are typically expected to run over the same
server which is used to power full blown websites, while
our proposed server is a standalone RESTful Web server
concerned with hosting RESTful web services created
through our own APIs.

To overcome the above drawbacks, this paper proposes
the design and implementation of a fully lightweight
RESTful Web server that follows all the RESTful
constraints and features, including:

• Provide a real 100% clean URL (Uniform
Resource Locator).

• Dedicated to deploy and host only RESTful web
services.

• Providing an auto generated Web Application
Description Language (WADL) document for
each service.

• Automatically provide the user with all the
available resources for a given service.

A. Proposed Web Server Architecture
The proposed Web server uses a multi-threaded

architecture, by utilizing threads to serve requests, this
approach basically associates each incoming connection
to be handled by a dedicated thread, while enabling the
various threads to easily share data structures. The
memory requirements for this type of architecture is
relatively little, as the server initializes a dynamic thread
pool at start up, the size of the pool varies with workload
intensity. When load increases, so will the pool size,
allowing more requests to be processed concurrently,
leading to reduction of the incoming queue size. When
the load is low, the number of threads reduces to free up
memory.

B. Proposed Web Server Requirements
• Usability of the Server: The server must be easy to

use, and not with a lot of configuration and
complex operation, the server must do almost
everything automatically, and with little or no
skills required to manage it.

• Compliance: The system is tested to be complaint
on the client-side with all the major browsers like
Microsoft Internet Explorer 6+, Firefox 2+,
Google Chrome 3+, Apple Safari 3+, and any
client that support the HTTP 1.1.

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1073

© 2014 ACADEMY PUBLISHER

Cop
y R

igh
ts

• Maint
and
Progr
separa
instru
difficu

• Perfor
respon
when
the m

• Secur
impor
how
under

• High
REST
all the
REST
contac

1) Externa

a) Main
i. D

o
c
n
c
fo
se
c
W
d
d
se

tainability: Th
follows th

amming (OO
ation, so by

uctions a nex
ult to alter fun
rmance and R
nse to the re
there are a l

max response ti
rity and Sur
rtant features i
it maintain e

r in an attack s
Level of Abs

T architecture
e technical de

T standard p
cts.

al Components

external comp
Deployer: As s
one of the ve
alling one or

needed, or
onfiguration).

for making a
erving by se
ompiling Java

WADL creat
document. Th
deleting any o
ervice, and

he system is
e formal
OP) paradigm
y following
xt developer
nctionality or
Response Time
equest as fast
ot of threads
ime should be
rvivability: O
is the security
everything un
situation.
traction: Sinc
style, there is

etails of how
protocols han

Figure 1

ts

ponents
soon as the se
ery first acti
r more deplo
specified in
. The deploye
a given serv

everal means
a source code
tor to gener
he deployer o
old deploymen

creates a ne

highly struct
Object Orie
m of clear

this docum
will not fin

fix a bug.
e: The server

as possible
in the same

e 3000.
One of the
y of our server
nder control

e we are usin
s no need to k
the service w

ndles all requ

1. A comprehen

erver is initiate
ions it takes
oyer threads (
n the serve
er is responsib
vice ready f
which includ

e and calling t
rate a WAD
object starts
nt folder for t
ew deployme

tured
ented

unit
ment's
nd it

must
even
time,

most
r, and
even

ng the
know
work,

quired

C. P
T

com
their
com
simp
in or
to h
serv

A
insu
from
proc
reso
apar
unde
Figu
unde
and

nsive overview of

ed,
is

(as
er's
ble
for
de,
the
DL
by
the
ent

Proposed Web
The server co
mponents, inte

r duties and
mponent is resp
ply process da
rder to get the

have several i
ve certain conc
All internal an
ure the rapid
m deploying s
cessing reque
ources to clien
rt and ana
erstanding of
ure 1, would
erstand the sig

how it

f the server’s com

fold
need
fold
cop
the
crea
defi

A
the
ins
com
exe
the
com
suc

b Server Comp
nsists of sev
grated in a s

work togeth
ponsible for o
ata and move i
e job done. So
instances run
currency need
d external com
and lightwe

services, acce
ests and fin
nts on the fly
alyzing its
the server's p

d clarify the
gnificance and
t interacts

mponents.

der to be acc
ded. The de

der for Java
ied there. The
manifest file

ates Java clas
ined for this se
All source cod

e Java Deve
talled on the
mpilation wh
ecutable byte-
e deployer ob
mpilation pro
ccessfully or

ponents
veral external
solid architect
her as a on
one or more t
it on to anoth
ome compone
nning at the s
ds.
mponents are

eight transact
epting several
nally returnin
y. Before taki

components
process cycle,
e required in
d functionality

with o

cessed by the
eployer obje

compiled c
e deployer ob
 for the given

sses according
ervice.
de classes are

elopment Kit
system, and

hich leaves on
-code classes.
bject checks
ocess has be

not, and re

and internal
ture to fulfill

ne unit, each
ransaction, or
er component

ents are meant
same time to

e integrated to
ions, starting
l connections,
ng requested
ing the server
s, a basic
 as shown by

nformation to
y of each unit

other units.

server when
ct creates a

classes to be
bject analyzes
n service and
g to resources

 compiled via
(JDK) pre-

deleted after
nly compiled
 At this point
whether the

een executed
eturns to the

l
l
h
r
t
t
o

o
g
,

d
r
c
y
o
t
.

n
a
e
s
d
s

a
-
r
d
t
e
d
e

1074 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

Cop
y R

igh
ts

server any errors. If the compilation
process was successful, the deployer calls
a WADL creator object to generate a
WADL document for the given service.
After the deployer has completed all tasks,
it returns to the caller a success or fail state
accompanied with failure details that may
have occurred at any point.

ii. WADL Creator: WADL creator object is
called to generate a WADL document for a
given service corresponding to the
international WADL document standards.
The WADL creator first reads the service's
manifest file and determines whether it is a
valid one or not. Information required to
generate the document is extracted from the
manifest file, and a WADL document is
created and information is parsed to it in
XML. After all tasks are completed the
WADL creator object returns a success or
failure state back to the caller accompanied
with failure details that may have occurred
at any point within the process.

b) Supporting External Components
The supporting external components are

used to respond to certain methods called by
some of the server's components under the
Windows operating system, as these methods
are natively supported under the Linux
operating system, anyhow they had to be
satisfied when running the server under
Windows. Further details address these issues
and explain how these components support the
server’s processes under Windows.

i. rm: under the Linux operating system, the
“rm” command is used to remove a file or
folder, and could be used with other
arguments, however under the Windows
operating system this command is not
defined, while a similar command is
available, it was seen for the best to create
an external package that would simulate this
command under windows. A number of
components within the server call the system
command “rm”, which is not an issue under
Linux, using this package ensures that is
command will also be carried out under
Windows just as so. Once called, the rm
object reads the call's arguments and if valid,
will delete a file or folder as specified by the
call.

ii. Javac: The java JDK compiler under the
Linux operating system can be called by the
command “javac” accompanied by other
arguments, however under the Windows
operating system the full path for this
command should be stated. As some
components of the server make calls to the
Java compiler, the call would work
flawlessly under Linux, anyhow it would not
work under Windows. javac component
locates the Java JDK compiler on the system

(if any found), passes the arguments to the
compiler, insuring that any calls using the
command “javac” under Windows would be
passed to the compiler with the full proper
path.

iii. cp: under the Linux operating system, the
“cp” command is used to copy a file or a
folder, the command is accompanied with
some arguments. Under the Windows
operating system, a similar command is
available, however the exact same command
does not exist. Some of the server's
components call this system command,
anyhow it would not work under Windows,
which is why this component exists in order
to simulate the functionality of this
command under Windows. The cp object
reads a call with its arguments, and is
responsible for completing the required copy
action based on the call's arguments.

2) Internal Components

a) Listener
The Listener object is considered to be the lowest

level component in the server, as well as being the
most substantial. Its main objective is to receive a
connection from a client, decide whether to accept
or deny it, create a new handle object to process the
request.

When a new listener object is initiated, it listens
to a given port for any new connection, once a
connection request is made, the listener object stops
listening, and initiates a new listener object to listen
for any new connection requests, and notifies the
counter object of one new connection is being
handled. The listener checks the client's IP against a
predefined list of denied IP addresses. If this client
is not found in the list, its connection to the server
is granted, and a data stream is now opened
between the client and server for incoming
payloads. The listener waits for a predefined
amount of time for the client to make a request.
Once a request is made, the listener analyzes the
HTTP header, determines if the request is valid, by
checking the HTTP request method (valid methods
are OPTIONS, GET, HEAD, POST, PUT,
DELETE, TRACE, JEFF, CATS) [27]. Other
information is extracted from the HTTP request
header to be added to the log information. A couple
of header items “x-forwarded-for” and “via” (if
exist in the HTTP header) are scanned for IP
addresses, and if found are checked against the
denied IP, which may lead to the fact that a denied
client is making a connection to the server through
a proxy server. In this case the listener will close
and terminate the connection.

At this point, the listener object creates a handle
object to process the request and give back a
suitable response, once the newly created handle
object returns the response, the listener returns the
response to the client by dividing the response into
several packets (depends on the size of the response
and the network buffer size at the time). After the

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1075

© 2014 ACADEMY PUBLISHER

Cop
y R

igh
ts

response has been delivered to the client, the
listener notifies the running logger object of the
transaction made, then waits for further requests or
terminates, depending on what action was requested
by the client in the HTTP header item “connection”.
The maximum number of allowed “keep-alive”
requests is predefined by the admin in the server's
configuration. At any point the listener has
completed its tasks and just before it is terminated,
notifies the counter object that it has completed its
work, thus one connection is done with.

b) Handle
Generating a suitable response, along with a

HTTP response header is the main functionality of
the server, this is the responsibility of the handle
object. Once a new handle object is created and a
request is passed to it, the first thing the handle
checks for in order to determine the response, is the
HTTP request method. If the request involves
invoking a service, the handle will search for the
service, invoke its resources, using the Java JRE
pre-installed on the system, returns back the
response, adds to it a suitable HTTP header
depending on the request and response. Returns the
whole response to the caller (a listener object), and
then the handle object is terminated. The handle
object is built to be able to generate a suitable
response in every possible case (e.g requested
resource does not exist, HTTP request version is
not supported, uniform resource identifier (URI) is
too long, no response found, wrong method is used,
or bad syntax is used to reach a specified resource,
etc.).

c) Logger
Each complete transaction within the server

(connection, handling, response) is logged to an
external log file, corresponding to the World Wide
Web Consortium (W3C) log file format standard.
The logger object is always running as a concurrent
thread. Its main objective is to receive notifications
of transactions with their full details and write them
to the log file. The logger object has a queue of
transactions waiting to be written to the log file,
whenever the logger receives a new transaction
notification, it is added to this queue to be written
once its turn is due. Two logger objects run within
the server, the first is to log transactions, the other
is to log any errors that may occur. Separate log
files are used for these purposes, which can be
defined by the admin in the server's configuration.

d) Counter
In order to limit the maximum number of active

connections made to the server, the counter object
which is always running as a concurrent thread
keeps count on the current number of concurrent
connections currently being handled by the server.
A new connection to the server cannot be initiated
if the number of current connections has reached
the maximum allowed connections. The number of
maximum allowed connections to the server is
defined by the admin before starting the server in
the server's configuration.

e) Controller

The controller component is always running as a
concurrent thread, it has one objective, which is
simply to wait for any keystrokes from the admin, if
the captured keystroke is a “q” character, the
controller object will end the server's process.

D. XML File Schema
In order to build a web service to run on the

server, an XML file (manifest.xml) should be
created for this service, containing a description of
the service and its resources. A Java class
(Index.java) should also be created for the service,
where all the resources server-side code will be
held. The XML file should comply with certain
rules in order for the server to be able to
successfully read and identify resources within this
service. These rules are:
• All tags within this file should be placed within

a <service> tag.
• The service base attribute tag (<base>) must be

defined before adding any resource tags. Where
the base defines the URL of the service on the
server (e.g,
<base>http://localhost:8080/f2c/</base>).

• After the base tag is added, a <resources> tag
can be placed now to start adding resources to
the service.

• For a group of resources within a <resources>
tag, a <method> tag should be added to let the
server know of the suitable method clients can
reach these resources (e.g,
<method>GET</method>).

• For each resource, a <resource> tag must be
added.

• For each resource, a <name> tag must be
included to identify the name of this resource
(e.g, <name>celsius</name>).

• Another tag should be added for the resource,
which is the <action> tag, which tells the server
which Java method to invoke when a client calls
this resource (e.g,
<action>@converttocelsius</action>).

• A <produces> tag should also be added for a
resource, in order to let the server know what
MIME type to respond with to the client (e.g,
<produces>application/xml</produces>)

• The <description> tag is an optional tag, where
the developer could add a comment describing
this resource’s work (e.g, <description>returns
celsius degree, from fahrenheit
degree</description>).

• If a resource is designed to parse one or more
parameter, a <parameter> tag should be added
for each parameter.

• For each parameter, a <pname> tag should be
added to include the name of this parameter (e.g,
<pname>fdegree</pname>).

• A <ptype> tag should also be included to
determine the type of this parameter (Int, String,
Double, Boolean) (e.g, <ptype>int</ptype>).

• A <default> tag is optional, which includes a
default value for this parameter, for the client to

1076 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

Cop
y R

igh
ts

consider when parsing a value (e.g,
<default>38</default>).

• The <option> tag is also optional, where it holds
an optional value for the client to consider for
this parameter. One or more <option> tag may
be added for a parameter (e.g,
<option>100</option>).

The following Table shows an XML file containing

a description of a service “f2c”(returns Celsius degree
from Fahrenheit degree):

TABLE I. AN EXAMPLE OF AN XML FILE

E. Main Java Class Constraints

• Each method defined within the class should
have a string return type.

• A method should contain each parameter
defined in the XML file, to be parsed as String.

• Every method should also parse three static
variables (remoteAddr, requestURI, String
reqBody) all of type String, which can be used
within the method.

The following Table shows the “Index.java” class
written as an example for the previous XML file
example that was specified in Table I:

TABLE II. AN EXAMPLE OF A JAVA INDEX CLASS

Note: the XML file, java index class, and any other

external java classes should be all put together in the
same directory, which has the name of the service. The
service’s directory is to be put into the server’s “htdocs”
directory.

IV. TESTING AND RESULTS

For testing purposes, we need to make sure that
every output of the Web server meets the requirements,
and we would perform a load and performance test.
Our test case would be testing the same service that we
built and used as example to convert from Fahrenheit
to Celsius. Unfortunately, we were unable to compare
our results with other Web servers like Apache or
Nginx since our Web server support clean URL
whereas Apache and Nginx don’t support a real clean
URL, which would be a problem. SoapUI 4.5 is one of
the famous SOAP and REST testing software, and that
is what we will use in our tests.

To begin our testing, we need first to initiate a
soapUI project as shown by Fig. 2.

Figure 2. Project Creation.

Now we add the WADL URL to the project, by
‘Right Click on the Project Add WADL’ as shown
by Fig. 3.

public class Index {
public Index() {}
//@GET
//produces application/xml
public String converttocelsius(String fdegree,
String remoteAddr, String requestURI, String
reqBody) {
Response response = new Response();
double cel = (Double.parseDouble(fdegree) - 32)
* 5 / 9;
response.print("<celsius>"+cel+"</celsius>");
return response.getResponse();
}
}

<?xml version="1.0" encoding="UTF-8"?>
<service>
 <base>http://localhost:8080/f2c/</base>
 <resources>
 <method>GET</method>
 <resource>
 <name>celsius</name>
 <action>@converttocelsius</action>
 <parameter>
 <pname>fdegree</pname>
 <ptype>int</ptype>
 <default>38</default>
 <option>100</option>
 <option>50</option>
 </parameter>
 <produces>application/xml</produces>
 <description>returns Celsius degree,
 from Fahrenheit
degree</description>
 </resource>
 </resources>
</service>

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1077

© 2014 ACADEMY PUBLISHER

Cop
y R

igh
ts

In Fig. 4 w
all the resour
just by read
which would
WADL docu
the documen

Looking in
a request to
example “80
The results
formats, with
quiet fast.

Figure

Figure 3. L

we can notice
rces of that se
ing the WAD
d even prove
ument correct

ntation.

Figure 4.

nto Figures 5
the server to

0 Fahrenheit” t
were correct

h average resp

e 5. Converting

Linking WADL.

e that the soap
ervice, and m
DL document
e that the ser
tly based on

Project Tree.

and 6, the me
convert Fahre
to Celsius De
t in both XM
ponse time (2

Example – XML

pUI has defin
methods correc

of the servi
rver created t
the standard

ethod that sen
enheit degree

egree is invoke
ML and HTM
50ms), which

L Respone.

ned
ctly
ce,
the
of

nds
as

ed.
ML
h is

st
an
sh
tim
tim

us
gr
de

Fig

te

Figure 6.

A load test o
arted with a
nd the results
hown by Fig.
me (226.66m
me (701ms), a

Figu

The system

sed to monito
reat, with av
epicted by Fig

Figure 8. Load

gure 9. Load Te

Bearing in m
st, we decided

Converting Exa

on the server
simple test of
were good a
7, were as

s), minimum
and with zero

ure 7. Load Tes

monitor in L
or our resour

verage of 25%
gures 8 and 9.

d Test Results – S
Test

est Results – Simp

mind the good
d to take it to

ample – HTML R

is conducted,
f 5 threads in

as expected. T
follows: aver

m time (166m
errors.

st Results - Simpl

Linux Operati
rces, and the
% of the CP

Simple – Server S
t 1.

mple – Server Statu

d results from
o the next leve

Respone.

, in which we
n 60 seconds,
The results, as
rage response
s), maximum

le

ing System is
results were

PU usage as

Status During

us During Test 2.

the 5 threads
el and created

e
,
s
e

m

s
e
s

.

s
d

1078 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

Cop
y R

igh
ts

a test case w
were more th
1000 threads
average res
(202ms), ma
errors. The re

Figu

Figu

Figure 12.

Figure 13. L

To sum up
proposed RE
recorded zer
all the transa

with 1000 thre
han great whe
s correctly. T
sponse time
aximum time (
esults shown b

ure 10. Load Te

ure 11. Load Te

Load Test Resul

Load Test Results
T

p, the results w
ESTful Web s
ro errors, and
actions and it w

ads in 60 seco
ere the server
The results w

(265ms), m
(387ms), and
by Figures 10

est Results – Adv

est Results – Adv

lts – Advanced –
Test 1.

– Advanced – Se
Test 2.

were more tha
server in whic

the access lo
was all succes

onds, the resu
r handled all t

were as follow
minimum tim
again with ze
, 11, 12 and 1

vanced 1.

vanced 2.

Server Status Du

erver Status Durin

an perfect for t
ch the error l
og file record
ssful.

ults
the
ws:
me
ero
13.

uring

ng

the
log
ded

10
te
Th
70

se
se
us
W
sin
pr
m
w
ar
se
ar
cu
sc
ap
w
se
de
se
w

[1

[2

[3

[4

[5

[6

[7

[8

[9

NOTE: The
0.04 (Dual C
sting conduct
he server min
00 MHz proce

V. CO

In this pape
erver that can
ervices instead
sed for Full-B

Web server pr
nce it is less
rovides devel

method for imp
web APIs w
rchitectural c
ecurity challe
rchitecture th
urrent implem
calability of
pplications an

work will focus
ecurity challen
etailed literatu
ervers, testing

with our propos

] J. Becker,
Architectura
a REST vs
Developmen
Wojtkowski

2] T. Kaewkiri
Distributed
of Computer

] C. Liu, an
Framework
Journal of C

4] N. Laranjeir
testing appr
Internet Ser
215-232, 2
0062-2.

] H. Xu, A.
Against XM
Firewall,” Jo

6] ZDNet. "SO
tells us s
http://www.
cloud-by-the
far/3974.

7] P. Prescod
Proceedings
Conferences

] M. zur Mue
“Developing
case of RES
40, no
http://dx.doi

9] G. Mulligan
and REST
interaction
Proceedings

server was r
Core 1.7 GH
ed on Window
imum requirem
essor and 512M

ONCLUSION AN

er, we have p
n be used for
d of using the
Blown website
rovides high
demanding on
lopers with a
plementing, d

which will s
onstraints. H

enges concer
hat have not
mentation. The

the REST
nd services [2
s on addressin
nges in our im
ure review fo
their perform

sed architectur

REFERE

M. Matzner,
al Styles for Ser
. SOAP Case
nt, G. A. Papad
i et al., eds., pp
iya, R. Saga, a
e-Learning Ma

rs, vol. 8, no. 7,
nd D. Liu, “

by Mixed
Computers, vol.
ro, M. Vieira, a
roach for SOA
rvices and App
2012. http://dx

Reddyreddy, a
ML-Based Attac
ournal of Comp

OA and cloud b
o far," [view
zdnet.com/blog
e-numbers-wha

d, “Roots of
s of the 2002
s, Quebec, Cana
ehlen, J. V. Nic
g web services

ST vs. SOAP,” D
o. 1,
i.org/10.1016/j.
n, and D. Graca
T implementat

independence
s of the 2009 W

running on L
Hz, 2GB DDR
ws 7 (Core i5,
ements are AR
MB SDRAM

ND FUTURE W

presented a R
hosting RES

e ordinary se
es. The propo
performance
n system reso
a rapid and
deploying and
satisfy the

However, the
rning the RE

been consid
ese challenge

T style arch
28]. Therefor
ng and solving

mplementation
or different a

mance compari
ure will be carr

ENCES

and O. Mülle
rvice-Oriented
Study," Inform

dopoulos, W. W
. 207-215, US:

and H. Tsuji, “F
Management Sys

, 2013.
“QoS-oriented

Programming
. 8, no. 7, 2013.
and H. Madeira

AP Web service
plications, vol.

x.doi.org/10.100

and D. F. Fitc
acks Using Stat
puters, vol. 6, n
by the numbers
wed 27 Nove
g/service-orient
at-the-data-tells

f the Rest/So
Extreme Mark

ada, 2002.
ckerson, and K

s choreography
Decision Suppo

pp. 9-2
.dss.2004.04.00
anin, “A compa
tions of a
e middleware
WinterSimulati

Linux Ubuntu
R2), and the
, 4GB DDR3)

RM1176JZF-S
memory.

WORK

RESTful Web
ST-based web
rvers that are

osed RESTful
and stability

ources. It also
cost-effective

d serving their
REST style
re are some
ESTful style
dered in our
s reduces the
hitecture for
re, our future
g some of the
. Furthermore
vailable Web
ing the results
ried out.

er, "Comparing
Architectures -

mation Systems
Wojtkowski, G.

Springer, 2010
Framework for
stem,” Journal

Web Service
Techniques,”

.
, “A robustness
es,” Journal of
. 3, no. 2, pp.
07/s13174-012-

ch, “Defending
te-Based XML

no. 11, 2011.
: what the data
ember, 2011];
ted/soa-and-
-us-so-

oap Debate.,”
kup Languages

K. D. Swenson,
standards- the

ort Systems, vol
29, 2005.
08.
arison of SOAP
service based

framework,”
ion Conference

u
e
).
S

b
b
e
l
y
o
e
r
e
e
e
r
e
r
e
e
e,
b
s

g
-
s
.
0.
r
l

e
”

s
f
.
-

g
L

a
;

”
s

,
e
l.
.

P
d
”
e

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1079

© 2014 ACADEMY PUBLISHER

Cop
y R

igh
ts

(WSC), Austin, Texas, pp. 1423-1432, 2009.
http://dx.doi.org/10.1109/wsc.2009.5429290.

[10] R. Battle, and E. Benson, “Bridging the semantic Web
and Web 2.0 with Representational State Transfer
(REST),” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 6, no. 1, pp. 61-69, 2008.
http://dx.doi.org/10.1016/j.websem.2007.11.002.

[11] I. Zuzak, and S. Schreier, “ArRESTed Development:
Guidelines for Designing REST Frameworks,” IEEE
Internet Computing, vol. 16, no. 4, pp. 26-35, 2012.
http://dx.doi.org/10.1109/mic.2012.60.

[12] N. S. Bhuvaneswari, and S. Sujatha, Integrating Soa and
Web Services: River Publishers, 2011.

[13] L. Richardson, and S. Ruby, RESTful Web Services:
O'Reilly Media, 2008.

[14] R. T. Fiedling, “Architectural Styles and the Design of
Network-Based Software Architectures,” University of
California, Irvine, 2000.

[15] D. N. Darji, and N. B. Thakkar, “Comparative Study on
the Features of Different Web Services Protocols,”
International Journal of Research in Computer
Application & Management, vol. 2, no. 9, pp. 102-106,
2012.

[16] InfoQ. "REST and SOAP: When Should I Use Each (or
Both)?," [viewed 26 March, 2012];
http://www.infoq.com/articles/rest-soap-when-to-use-
each.

[17] Geeknizer. "REST vs. SOAP - The Right WebService,"
[viewed 26 March, 2012]; http://geeknizer.com/rest-vs-
soap-using-http-choosing-the-right-webservice-protocol/.

[18] Ajaxonomy. "Web Services, Part 1: SOAP vs. REST,"
[viewed 26 March, 2012];
http://ajaxonomy.com/2008/xml/web-services-part-1-
soap-vs-rest.

[19] K. Jucyte. "Web service implementation with SOAP and
REST," [viewed 26 March, 2012];

http://rudar.ruc.dk/bitstream/1800/2108/1/Web%20servi
ces%20-%20SOAP%20%26%20REST.pdf.

[20] D. L. Ridruejo, and D. Lopez, Sams Teach Yourself
Apache 2 in 24 Hours: Sams Publishing, 2002.

[21] G.-h. Li, H. Zheng, and G.-z. Li, “Building a Secure
Web Server Based on OpenSSL and Apache,”
Proceedings of the 2010 International Conference on E-
Business and E-Government (ICEE), Guangzhou, pp.
1307-1310, 2010.
http://dx.doi.org/10.1109/icee.2010.334.

[22] Wikipedia. "Internet Information Services," [viewed
Septemper 2, 2013];
http://en.wikipedia.org/wiki/Internet_Information_Servi
ces.

[23] D. Aivaliotis, Mastering Nginx, UK: Packt Publishing,
2013.

[24] W. Reese, “Nginx: the high-performance web server and
reverse proxy,” Linux Journal, vol. 2008, no. 173, 2008.

[25] H. J. Li, “Research on Restful Web Services in Java,”
Applied Mechanics and Materials, vol. 135-136, pp.
806-808, 2012.

[26]L. Hongjun, “RESTful Web service frameworks in Java,”
Proceedings of the 2011 IEEE International Conference
on Signal Processing, Communications and Computing
(ICSPCC), Xi'an, pp. 1-4, 2011.
http://dx.doi.org/10.1109/icspcc.2011.6061739.

[27] J. G. R. Fielding, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee, Hypertext Transfer Protocol--
HTTP/1.1, RFC 2616, Internet Engineering Task Force,
1999.

[28] D. Forsberg, "RESTful Security," Nokia Research
Center, Helsinki, 2009, [viewed 06 January, 2013];
w2spconf.com/2009/papers/s4p3.pdf.

1080 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

Cop
y R

igh
ts

