JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

1071

Proposed Design and Implementation for
RESTful Web Server

Mou’ath Hourani, Qusai Shambour, Ahmad Al-Zubidy and Ali Al-Smadi
Software Engineering Department, Faculty of Information Technology
Al-Ahliyya Amman University, PO Box 19328, Amman, Jordan
{mouath.hourani@ammanu.edu.jo}, {Q.Shambour@ammanu.edu.jo} {a.jonline@yahoo.com}, {ali.a-
smadi@hotmail.com}

Abstract— In this paper, we propose a framework to design
and implement a novel RESTful Web server architecture.
The proposed RESTful Web server architecture is a
lightweight server that will be less taxing on system
resources and will therefore handle a greater volume of
requests. Furthermore, in contrast to the usual servers that
supports most websites, the proposed RESTful Web server
architecture is used for hosting RESTful-based Web
Services. Moreover, the results obtained from our
experiments show that the proposed architecture
demonstrates high performance while maintaining proper
stability. Our Web server is programmed in Java using a
simple yet flexible web application framework that fulfills
the needs of modern web application development. It also
provides developers with a rapid and cost-effective method
for implementing, deploying and serving a web API
(Application Programming I nterface).

Index Terms—Service-Oriented Architecture (SOA), REST,
RESTful, Web Server, Web Services, Web API.

I. INTRODUCTION

Software architecture is an abstraction of the run-time
elements of a software system. It can be defined by the
configuration of its elements. Such elements (components,
connectors, and data) are constrained in their function and
relationships in order to achieve a required set of
architectural properties (e.g., scalability, reliability,
reusability) [1]. A coordinated set of such architectural
constraints is called an architectural style [1].

Web service based applications have been widely
applied in a variety of domains with the development of
Service-oriented architecture (SOA) [2, 3]. SOA is an
architectural style that guides all aspects of creating and
using services throughout their lifecycle, as well as
defining and providing the infrastructure that allows
heterogeneous applications to exchange data. This
communication usually involves the involvement in
business processes, which are loosely coupled to their
underlying implementations. SOA represents a model in
which functionality is decomposed into separate units
(services) that can be spread over a network and can be
united together and reused to create business applications
[4]. SOA allows the creation of systems using reusable
components with well-defined service interfaces, these

©2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.5.1071-1080

components can be published as discoverable services
over the Internet based on their capabilities [5]. Ninety-
two percent of companies say their SOA initiatives met or
exceeded business unit objectives, while only eight
percent say they did not. Additionally, SOA market is
growing 17% a year to reach $10 billion by 2015 [6].

Currently, two architectural styles are commonly
discussed in the context of SOA: firstly, the Simple
Object-Access Protocol (SOAP) styles and related
standards (e.g., WSDL). Secondly, styles based on the
Representational State Transfer (REST) with loosely
coupled designs similar to resources of the World Wide
Web. Although the REST vs. SOAP debate is mostly
ignored in academia, the SOA community is still arguing
about the pros and cons of each style [1, 7-9]. However,
REST’s simplicity, beside its natural fit over HTTP, has
contributed to its status as the best method to achieve a
desired result for Web 2.0 applications in terms of
exposing their data [10].

The REST style architecture is a main contributor to
the Web’s success. REST describes how the web as a
large scale distributed hypermedia systems, have to
operate to make the most of beneficial properties,
including scalability, modifiability, performance,
simplicity, and reliability. To retain usability in the face
of increasing growth and expansion into new domains,
the Web must maintain the benefits of the RESTful
design. However, even though REST principles have
been known for more than a decade, developing systems
that conform to them is difficult [11].

In this paper, we propose a framework architecture to
design and implement a RESTful Web server that
conforms to REST constraints/principles. The proposed
RESTful Web server as a lightweight server will be able
to handle more requests since it is less taxing on system
resources, and provides high performance, and stability.
This paper is organized as follows. Section 2 provides
background information on REST style architecture and
an overview of the most popular Web servers. In Section
3, we propose our RESTful Web server including its
structure, requirements and components. Section 4
illustrates the evaluation and results. Finally, conclusions
and directions for future study are provided in Section 5.

II. BACKGROUND AND LITERATURE REVIEW

1072

This section reviews literature related to this study.
First, an overview of the REST style architecture is
presented. We then provide a review of its benefits.
Finally, an overview of the most popular Web servers is
presented.

A. REST-Style Architecture

REST style architecture consists of clients and servers.
Clients initiate requests and servers process them and
return responses. Requests and responses are built around
the transfer of resources' representations [1, 12]. A
resource can be any meaningful information that can be
named. A representation of a resource is a document that
captures the intended state of a resource [1, 12]. REST
style architecture addresses four main goals [1, 12]:

e Scalability of component interactions;

e Generality of interfaces;

¢ Independent deployment of components; and

e Intermediary components to reduce interaction
latency, enforce security, and encapsulate legacy
systems.

REST achieves these goals by implementing the
following principles [1, 12-14], which are:

1. Client-Server

Separation of concerns is the principle behind the
client-server constraints in which clients are separated
from servers by a uniform interface. By separating the
user interface concerns from the data storage concerns,
the portability of the user interface across multiple
platforms is improved. Also, this improves the servers'
scalability.

2. Sateless

The concept of stateless means that the client-server
communication is constrained by no client context being
stored on the server between requests. Each client request
has to be fully self-descriptive, is considered in isolation,
and is interpreted only in context of the current resource
state. Application state is maintained by the clients. This
makes servers more visible for monitoring and more
reliable in the face of network failures.

3. Cacheable

Clients are able to cache responses in order to improve
network efficiency. Cache constraints require that the
data within a response to a request be implicitly or
explicitly defined as cacheable or non-cacheable to
prevent clients reusing inappropriate data in response to
further requests. If a response is cacheable, then a client
cache is given the right to reuse that response data for
later, equivalent requests. This constraint improves
scalability and performance.

4. Layered system

The layered system style allows an architecture to be
composed of hierarchical layers by constraining
component behavior such that each component cannot
“see” beyond the immediate layer with which they are
interacting. Intermediaries can also be used to improve
system scalability by enabling load balancing of services

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

across multiple networks and processors. They may also
enforce security policies.

5. Uniform Interface

The concept of the Uniform Interface explicates that
all communication between client and the server is
conducted using the fixed operation set provided by
HTTP: GET, PUT, POST, DELETE. A GET method
retrieves the current representation of the requested
resource from the server to the client. The PUT method
allows the client to change the state of the resource by
modifying its representation and transferring it back to
the server. The POST method creates a resource on the
server. DELETE removes a resource from the server.

Fulfilling these REST style architectural constraints
will enable any kind of distributed hypermedia system to
have desirable evolving properties, such as performance,
scalability, simplicity, modifiability, visibility, portability
and reliability. In addition, conforming to the above
constraints is generally referred to as being “RESTful”. If
a service violates any of the required constraints, it

cannot be considered RESTful [1, 12-14].

B. Benefits of the REST-Style Architecture

The main benefits of REST style architecture are [15-
19]:

e The REST it is a simple yet effective technology
that can be used to create web services. Without
needing any toolkit, developers need to know the
Hypertext Transfer Protocol (HTTP), HyperText
Markup Language (HTML) and Extensible
Markup Language (XML) in order to implement
web services.

e Also, using standard formats as HTML or XML
ensures compatibility over time.

e Requests and responses through the REST
interface can be short. Thus, in terms of bandwidth
usage, REST is light.

e REST developers can easily create and modify an
URI to access different Web resources.

e With the support for caching, REST provides
improved response times and server loadings due
to the totally stateless operation of the REST
approach.

e By reducing the need to maintain communication
state, REST improves server scalability. This
means that initial and subsequent requests can be
handled in different servers.

e Since a single browser can access any resource
and application, REST demands less client-side
software to be written than other approaches.

e With the use of hyperlinks in content, a separate
resource discovery mechanism is not needed.

e Less memory consumption than others.

e Possibility to distribute queries across more than
one server.

In terms of testing and troubleshooting. It is easy to
test and troubleshoot an HTTP REST API since one can
construct a call with nothing more than a browser and
check the response inside the browser window itself. No

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

troubleshooting tools are required to generate a request /
response cycle.

C. Related Literature: Most Popular Web Servers

According to the Septemper 2013 Netcraft Web Server
Survey (http://news.netcraft.com/archives/category/web-
server-survey/), three servers are currently widely used
on the Web: the Apache Server from the Apache
Software Foundation (http://httpd.apache.org/), Internet
Information Server (I1S) from Microsoft
(http://www.iis.net/) and the Nginx Web Server
(http://nginx.org/). Apache is the first most popular Web
Server in the world with a market share of 47%. IIS is the
second most popular Web Server with a market share of
22%, whereas the Nginx come in the third place with a
market share of 15%. However, this doesn’t
automatically mean that Apache is better than other Web
servers. A reason might be that Apache has been around
longer than others, giving Apache an edge since it’s
already been integrated into a lot of systems.

Apache is the most popular Web server and one of the
most successful open-source projects of all time. Apache
has proven to be a very stable, scalable, secure, cross-
platform, and flexible Web server in which it facilitates
interface customization. However, its configuration
process is complicated and requires profound special
knowledge. Additionally, there are Web servers that are
more lightweight and faster than Apache. Although
Apache scales well and can handle high loads, other Web
servers might be more appropriate for serving pure static
content [20, 21].

Unlike Apache which is a free open-source Web server,
Internet Information Server (IIS) is a Web server created
by Microsoft in which it comes with the server versions
of Windows and cannot be downloaded separately. IIS
has a modular architecture. Modules, also called
extensions, can be added or removed individually so that
only modules required for specific functionality have to
be installed. IIS includes native modules as part of the
full installation. These modules are individual features
that the server uses to process requests. In addition, IIS
includes enhanced security features. These features are:
client certificate mapping, IP security, request filtering
and URL authorization. However, IIS runs only on
Windows unlike Apache which runs on almost every
operating system [22].

Although Apache is an excellent open-source Web
server, Nginx Web server can be considered as an
alternative with the same functionality, a simpler
configuration, better performance and efficiency. Nginx
is a high-performance Web server and reverse proxy
designed to use very few system resources. Nginx was
first conceived to be an HTTP server. It was created by
Igor Sysoev to solve the C10K problem, described by
Daniel Kegel at http://www.kegel.com/c10k.html, of
designing a Web server to handle 10,000 simultaneous
connections. Nginx is able to do this through its event-
based connection-handling mechanism, and will use the
OS-appropriate event mechanism in order to achieve this
goal. Like Apache, Nginx is used by some of the largest
Web sites in the US, including WordPress, Hulu and

©2014 ACADEMY PUBLISHER

1073

MochiMedia. Nginx is the third-most-popular Web server,
and it is currently serving more than 112 million Web
sites [23, 24].

I11. THE PROPOSED RESTFUL WEB SERVER
ARCHITECTURE

Although there are many widely available RESTful
web service API’s in java and other programming
languages (e.g, Jersey, JBoss and Restlet), which
eventually lead to RESTful web services complying with
the main REST constraints [11, 13, 25, 26], however, (1)
developing RESTful web services is still a key challenge
due to the lack of software development frameworks that
support all REST constraints; (2) most of the RESTful
web services are typically expected to run over the same
server which is used to power full blown websites, while
our proposed server is a standalone RESTful Web server
concerned with hosting RESTful web services created
through our own APIs.

To overcome the above drawbacks, this paper proposes
the design and implementation of a fully lightweight
RESTful Web server that follows all the RESTful
constraints and features, including:

e Provide a real 100% clean URL (Uniform
Resource Locator).

e Dedicated to deploy and host only RESTful web
services.

e Providing an auto generated Web Application
Description Language (WADL) document for
each service.

e Automatically provide the user with all the
available resources for a given service.

A. Proposed Web Server Architecture

The proposed Web server uses a multi-threaded
architecture, by utilizing threads to serve requests, this
approach basically associates each incoming connection
to be handled by a dedicated thread, while enabling the
various threads to easily share data structures. The
memory requirements for this type of architecture is
relatively little, as the server initializes a dynamic thread
pool at start up, the size of the pool varies with workload
intensity. When load increases, so will the pool size,
allowing more requests to be processed concurrently,
leading to reduction of the incoming queue size. When
the load is low, the number of threads reduces to free up
memory.

B. Proposed Web Server Requirements

e Usability of the Server: The server must be easy to
use, and not with a lot of configuration and
complex operation, the server must do almost
everything automatically, and with little or no
skills required to manage it.

e Compliance: The system is tested to be complaint
on the client-side with all the major browsers like
Microsoft Internet Explorer 6+, Firefox 2+,
Google Chrome 3+, Apple Safari 3+, and any
client that support the HTTP 1.1.

1074

e Maintainability: The system is highly structured
and follows the formal Object Oriented
Programming (OOP) paradigm of clear unit
separation, so by following this document's
instructions a next developer will not find it
difficult to alter functionality or fix a bug.

e Performance and Response Time: The server must
response to the request as fast as possible even
when there are a lot of threads in the same time,
the max response time should be 3000.

e Security and Survivability: One of the most
important features is the security of our server, and
how it maintain everything under control even
under in an attack situation.

e High Level of Abstraction: Since we are using the
REST architecture style, there is no need to know
all the technical details of how the service work,
REST standard protocols handles all required
contacts.

29

client connects to server

Listener (New) |

ds it back to

Handle (New)

edonce its .+

Figure 1.

1) External Components

a) Main external components

i. Deployer: As soon as the server is initiated,
one of the very first actions it takes is
calling one or more deployer threads (as
needed, or specified in the server's
configuration). The deployer is responsible
for making a given service ready for
serving by several means which include,
compiling Java source code and calling the
WADL creator to generate a WADL
document. The deployer object starts by
deleting any old deployment folder for the
service, and creates a new deployment

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

C. Proposed Web Server Components

The server consists of several external and internal
components, integrated in a solid architecture to fulfill
their duties and work together as a one unit, each
component is responsible for one or more transaction, or
simply process data and move it on to another component
in order to get the job done. Some components are meant
to have several instances running at the same time to
serve certain concurrency needs.

All internal and external components are integrated to
insure the rapid and lightweight transactions, starting
from deploying services, accepting several connections,
processing requests and finally returning requested
resources to clients on the fly. Before taking the server
apart and analyzing its components, a basic

understanding of the server's process cycle, as shown by
Figure 1, would clarify the required information to
understand the significance and functionality of each unit
interacts

and how it with other units.

Denloyer

WADL creator J «eesessssnnnianen

A comprehensive overview of the server’s components.

folder to be accessed by the server when
needed. The deployer object creates a
folder for Java compiled classes to be
copied there. The deployer object analyzes
the manifest file for the given service and
creates Java classes according to resources
defined for this service.

All source code classes are compiled via
the Java Development Kit (JDK) pre-
installed on the system, and deleted after
compilation which leaves only compiled
executable byte-code classes. At this point
the deployer object checks whether the
compilation process has been executed
successfully or not, and returns to the

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

b)

server any errors. If the compilation
process was successful, the deployer calls
a WADL creator object to generate a
WADL document for the given service.
After the deployer has completed all tasks,
it returns to the caller a success or fail state
accompanied with failure details that may
have occurred at any point.

WADL Creator: WADL creator object is
called to generate a WADL document for a
given service corresponding to the
international WADL document standards.
The WADL creator first reads the service's
manifest file and determines whether it is a
valid one or not. Information required to
generate the document is extracted from the
manifest file, and a WADL document is
created and information is parsed to it in
XML. After all tasks are completed the
WADL creator object returns a success or
failure state back to the caller accompanied
with failure details that may have occurred
at any point within the process.

Supporting External Components

The supporting external components are

used to respond to certain methods called by
some of the server's components under the
Windows operating system, as these methods
are natively supported under the Linux
operating system, anyhow they had to be
satisfied when running the server under
Windows. Further details address these issues
and explain how these components support the
server’s processes under Windows.

rm: under the Linux operating system, the
“rm” command is used to remove a file or
folder, and could be wused with other
arguments, however under the Windows
operating system this command is not
defined, while a similar command is
available, it was seen for the best to create
an external package that would simulate this
command under windows. A number of
components within the server call the system
command “rm”, which is not an issue under
Linux, using this package ensures that is
command will also be carried out under
Windows just as so. Once called, the rm
object reads the call's arguments and if valid,
will delete a file or folder as specified by the
call.

Javac: The java JDK compiler under the
Linux operating system can be called by the
command “javac” accompanied by other
arguments, however under the Windows
operating system the full path for this
command should be stated. As some
components of the server make calls to the
Java compiler, the call would work
flawlessly under Linux, anyhow it would not
work under Windows. javac component
locates the Java JDK compiler on the system

©2014 ACADEMY PUBLISHER

1075

(if any found), passes the arguments to the
compiler, insuring that any calls using the
command “javac” under Windows would be
passed to the compiler with the full proper
path.

iii. cp: under the Linux operating system, the
“cp” command is used to copy a file or a
folder, the command is accompanied with
some arguments. Under the Windows
operating system, a similar command is
available, however the exact same command
does not exist. Some of the server's
components call this system command,
anyhow it would not work under Windows,
which is why this component exists in order
to simulate the functionality of this
command under Windows. The cp object
reads a call with its arguments, and is
responsible for completing the required copy
action based on the call's arguments.

Internal Components

a) Listener

The Listener object is considered to be the lowest
level component in the server, as well as being the
most substantial. Its main objective is to receive a
connection from a client, decide whether to accept
or deny it, create a new handle object to process the
request.

When a new listener object is initiated, it listens
to a given port for any new connection, once a
connection request is made, the listener object stops
listening, and initiates a new listener object to listen
for any new connection requests, and notifies the
counter object of one new connection is being
handled. The listener checks the client's IP against a
predefined list of denied IP addresses. If this client
is not found in the list, its connection to the server
is granted, and a data stream is now opened
between the client and server for incoming
payloads. The listener waits for a predefined
amount of time for the client to make a request.
Once a request is made, the listener analyzes the
HTTP header, determines if the request is valid, by
checking the HTTP request method (valid methods
are OPTIONS, GET, HEAD, POST, PUT,
DELETE, TRACE, JEFF, CATS) [27]. Other
information is extracted from the HTTP request
header to be added to the log information. A couple
of header items “x-forwarded-for” and “via” (if
exist in the HTTP header) are scanned for IP
addresses, and if found are checked against the
denied IP, which may lead to the fact that a denied
client is making a connection to the server through
a proxy server. In this case the listener will close
and terminate the connection.

At this point, the listener object creates a handle
object to process the request and give back a
suitable response, once the newly created handle
object returns the response, the listener returns the
response to the client by dividing the response into
several packets (depends on the size of the response
and the network buffer size at the time). After the

1076

response has been delivered to the client, the
listener notifies the running logger object of the
transaction made, then waits for further requests or
terminates, depending on what action was requested

by the client in the HTTP header item “connection”.

The maximum number of allowed “keep-alive”
requests is predefined by the admin in the server's
configuration. At any point the listener has
completed its tasks and just before it is terminated,
notifies the counter object that it has completed its
work, thus one connection is done with.
b) Handle

Generating a suitable response, along with a
HTTP response header is the main functionality of
the server, this is the responsibility of the handle
object. Once a new handle object is created and a
request is passed to it, the first thing the handle
checks for in order to determine the response, is the
HTTP request method. If the request involves
invoking a service, the handle will search for the
service, invoke its resources, using the Java JRE
pre-installed on the system, returns back the
response, adds to it a suitable HTTP header
depending on the request and response. Returns the
whole response to the caller (a listener object), and
then the handle object is terminated. The handle
object is built to be able to generate a suitable
response in every possible case (e.g requested
resource does not exist, HTTP request version is
not supported, uniform resource identifier (URI) is
too long, no response found, wrong method is used,
or bad syntax is used to reach a specified resource,
etc.).
c) Logger

Each complete transaction within the server
(connection, handling, response) is logged to an
external log file, corresponding to the World Wide
Web Consortium (W3C) log file format standard.
The logger object is always running as a concurrent
thread. Its main objective is to receive notifications
of transactions with their full details and write them
to the log file. The logger object has a queue of
transactions waiting to be written to the log file,
whenever the logger receives a new transaction
notification, it is added to this queue to be written
once its turn is due. Two logger objects run within
the server, the first is to log transactions, the other
is to log any errors that may occur. Separate log
files are used for these purposes, which can be
defined by the admin in the server's configuration.
d) Counter

In order to limit the maximum number of active
connections made to the server, the counter object
which is always running as a concurrent thread
keeps count on the current number of concurrent
connections currently being handled by the server.
A new connection to the server cannot be initiated
if the number of current connections has reached
the maximum allowed connections. The number of
maximum allowed connections to the server is
defined by the admin before starting the server in
the server's configuration.
e) Controller

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

The controller component is always running as a
concurrent thread, it has one objective, which is
simply to wait for any keystrokes from the admin, if

the captured keystroke is a “q” character, the
controller object will end the server's process.

. XML File Schema

In order to build a web service to run on the
server, an XML file (manifest.xml) should be
created for this service, containing a description of
the service and its resources. A Java class
(Index.java) should also be created for the service,
where all the resources server-side code will be
held. The XML file should comply with certain
rules in order for the server to be able to
successfully read and identify resources within this
service. These rules are:

e All tags within this file should be placed within
a <service> tag.

e The service base attribute tag (<base>) must be
defined before adding any resource tags. Where
the base defines the URL of the service on the
server (e.g,
<base>http://localhost:8080/f2c/</base>).

e After the base tag is added, a <resources> tag
can be placed now to start adding resources to
the service.

e For a group of resources within a <resources>
tag, a <method> tag should be added to let the
server know of the suitable method clients can
reach these resources (e.g,
<method>GET</method>).

e For each resource, a <resource> tag must be
added.

e For each resource, a <name> tag must be
included to identify the name of this resource
(e.g, <name>celsius</name>).

e Another tag should be added for the resource,
which is the <action> tag, which tells the server
which Java method to invoke when a client calls
this resource (e.g,
<action>(@converttocelsius</action>).

e A <produces> tag should also be added for a
resource, in order to let the server know what
MIME type to respond with to the client (e.g,
<produces>application/xml</produces>)

e The <description> tag is an optional tag, where

the developer could add a comment describing
this resource’s work (e.g, <description>returns
celsius degree, from fahrenheit
degree</description>).

e If a resource is designed to parse one or more

parameter, a <parameter> tag should be added
for each parameter.

e For each parameter, a <pname> tag should be

added to include the name of this parameter (e.g,
<pname>fdegree</pname>).

e A <ptype> tag should also be included to

determine the type of this parameter (Int, String,
Double, Boolean) (e.g, <ptype>int</ptype>).

e A <default> tag is optional, which includes a

default value for this parameter, for the client to

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

consider ~when parsing a value (e.g,
<default>38</default>).

e The <option> tag is also optional, where it holds
an optional value for the client to consider for
this parameter. One or more <option> tag may
be added for a parameter (e.g,
<option>100</option>).

The following Table shows an XML file containing
a description of a service “f2¢”(returns Celsius degree
from Fahrenheit degree):

TABLE I. AN EXAMPLE OF AN XML FILE

<?xml version="1.0" encoding="UTF-8"?>
<service>
<base>http://localhost:8080/f2¢c/</base>
<resources>
<method>GET</method>
<resource>
<name>celsius</name>
<action>@converttocelsius</action>
<parameter>
<pname>fdegree</pname>
<ptype>int</ptype>
<default>38</default>
<option>100</option>
<option>50</option>
</parameter>
<produces>application/xml</produces>
<description>returns Celsius degree,
from Fahrenheit
degree</description>
</resource>
</resources>
</service>

E. Main Java Class Constraints

e FEach method defined within the class should
have a string return type.
e A method should contain each parameter
defined in the XML file, to be parsed as String.
e Every method should also parse three static
variables (remoteAddr, requestURI, String
reqBody) all of type String, which can be used
within the method.
The following Table shows the “Index.java” class
written as an example for the previous XML file
example that was specified in Table I:

©2014 ACADEMY PUBLISHER

1077
TABLE II. AN EXAMPLE OF A JAVA INDEX CLASS

public class Index {

public Index() {}

//@GET

//produces application/xml

public String converttocelsius(String fdegree,
String remoteAddr, String requestURI, String
reqBody) {

Response response = new Response();

double cel = (Double.parseDouble(fdegree) - 32)
*5/9;
response.print("'<celsius>"+cel+"</celsius>");
return response.getResponse();

H

t

Note: the XML file, java index class, and any other
external java classes should be all put together in the
same directory, which has the name of the service. The
service’s directory is to be put into the server’s “htdocs”
directory.

1V. TESTING AND RESULTS

For testing purposes, we need to make sure that
every output of the Web server meets the requirements,
and we would perform a load and performance test.
Our test case would be testing the same service that we
built and used as example to convert from Fahrenheit
to Celsius. Unfortunately, we were unable to compare
our results with other Web servers like Apache or
Nginx since our Web server support clean URL
whereas Apache and Nginx don’t support a real clean
URL, which would be a problem. SoapUI 4.5 is one of
the famous SOAP and REST testing software, and that
is what we will use in our tests.

To begin our testing, we need first to initiate a
soapUI project as shown by Fig. 2.

5
1 New soapUl Project . |

New soapUI Project
Creates a new soapUl Project in this workspace

Project Name: ‘tastmg_;tahla_rws| |

Initial WSDLAWADL: | | [Browse..]

Create Requests:
Create TestSuite:
Create MockService:

Add REST Service: [Opens dialog to create REST Service

Relative Paths: [] Stores all file paths in project relatively to project file (requires save)

I Create Web TestCase: [_] Creates a TestCase with a Web Recording session for functional web testing

@ Cancel

Figure 2. Project Creation.

Now we add the WADL URL to the project, by
‘Right Click on the Project > Add WADL’ as shown
by Fig. 3.

1078

. LTS e

Add WADL
Creates a REST Service from a WADL definition

WADL Location: | htp://192.168.1 101:8080/£2c/applicationiad] | [Brouse..|

Create TestSuite: || Creates 2 TestSuite for the imported WADL

0

Figure 3. Linking WADL.

In Fig. 4 we can notice that the soapUI has defined
all the resources of that service, and methods correctly
just by reading the WADL document of the service,
which would even prove that the server created the

WADL document correctly based on the standard of

the documentation.

|£.|e Tools Desktop Help

Ban@s0X80

Projects
(= @ testing_stable_rws

- X fiesting steble nws]

=
]
=
‘s
=
=

= soapUI Starter Page

== Jeelsius/{fdegree} [/f2c/celsius/{fdegree}] EE REAS

=-seT GET
- B8 Requestl

Figure 4. Project Tree.

Looking into Figures 5 and 6, the method that sends
a request to the server to convert Fahrenheit degree as
example “80 Fahrenheit” to Celsius Degree is invoked.
The results were correct in both XML and HTML
formats, with average response time (250ms), which is

quiet fast.

Bn_looh_Debtsy_tip
LARLE Y 1L SearchFee.

s

[

- e srocme [emm——re—

Vi
Toi T

T ———

Figure 5. Converting Example — XML Respone.

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

ey ey

S

Figure 6. Converting Example —- HTML Respone.

A load test on the server is conducted, in which we
started with a simple test of 5 threads in 60 seconds,
and the results were good as expected. The results, as
shown by Fig. 7, were as follows: average response
time (226.66ms), minimum time (166ms), maximum
time (701ms), and with zero errors.

Figure 7. Load Test Results - Simple

The system monitor in Linux Operating System is
used to monitor our resources, and the results were
great, with average of 25% of the CPU usage as
depicted by Figures 8 and 9.

System Processes Resources File Systems

CPU History Q_
s - —

= » n

B cPuz 337%

Memory and Swap History
e

un
[oys—] = »]

Memary Swap

384.0 MiB (19.2 %) of 2.0GIB 2 0 bytes (0.0 %) of 4.£ Gig
Network History
‘o
. » " ») »n »
Receiving 54 bytesfs ‘ Sending 0 bytesss
Total Received 337.0 KB ‘Tokal Sent 23L.7KiB

Figure 8. Load Test Results — Simple — Server Status During

Test 1.
System Processes Resources File Systems
CPU History
s ac - -
e “ : .
B crul 21.2% b [cruz 15.0%
Memory and Swap History
TN
o
o - . — — -
[rye— u . n
Memary Swap
3814 MiB (19.0 %) of 2.0 GiB ® obytes (0.0%) of 4.6 Gin
Network Mistory
s
-
7 . » - " »n »
Receiving 0 bytess Serding 0 bytes/s
Total Received 3373 K8 Total Sent 23L7 KB

Figure 9. Load Test Results — Simple — Server Status During Test 2.

Bearing in mind the good results from the 5 threads
test, we decided to take it to the next level and created

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

a test case with 1000 threads in 60 seconds, the results
were more than great where the server handled all the
1000 threads correctly. The results were as follows:
average response time (265ms), minimum time
(202ms), maximum time (387ms), and again with zero
errors. The results shown by Figures 10, 11, 12 and 13.

bttt o m|
1 .= T e -

Figure 10. Load Test Results — Advanced 1.

ey Ty Ty p———y

Figure 11. Load Test Results — Advanced 2.

System Processes Resources File Systems

CPU History

CPUL 99.0% B cruz 58.0%

Mamory and Swap History B
Memary Swap

3242 MiB (16.2 %) of 2.0 GiB 0 bytes (0.0 %) of 4.6 GiB

Metwork History
Lo
Lnuan

B — —

& Receiving 1.9 KiBs Sending 4.0KiBjs
Total Received 413.2 KiB & Total Sent 3924 K8

Figure 12. Load Test Results — Advanced — Server Status During

Test 1.
System Processes Resources File Systems
CPU History
sz P e 5
B crul 99.0% B cruz w6.0%
Memory and Swap History B
.I\' - » a
B Memory 5 SmOP
388.2 MIB (19.4 %) of 2.0 GiB 0 bytes (0.0 %) of 4.6 GiS
Metwork History
e
e’ Recelving 27 KiBg _} Sending 5.2 KiBls
Total Received 468.4 Kig Total Sent. S09.5KiB

Figure 13. Load Test Results — Advanced — Server Status During
Test 2.

To sum up, the results were more than perfect for the
proposed RESTful Web server in which the error log
recorded zero errors, and the access log file recorded
all the transactions and it was all successful.

©2014 ACADEMY PUBLISHER

1079

NOTE: The server was running on Linux Ubuntu
10.04 (Dual Core 1.7 GHz, 2GB DDR2), and the
testing conducted on Windows 7 (Core i5, 4GB DDR3).
The server minimum requirements are ARM1176JZF-S
700 MHz processor and 512MB SDRAM memory.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a RESTful Web
server that can be used for hosting REST-based web
services instead of using the ordinary servers that are
used for Full-Blown websites. The proposed RESTful
Web server provides high performance and stability
since it is less demanding on system resources. It also
provides developers with a rapid and cost-effective
method for implementing, deploying and serving their
web APIs which will satisfy the REST style
architectural constraints. However, there are some
security challenges concerning the RESTful style
architecture that have not been considered in our
current implementation. These challenges reduces the
scalability of the REST style architecture for
applications and services [28]. Therefore, our future
work will focus on addressing and solving some of the
security challenges in our implementation. Furthermore,
detailed literature review for different available Web
servers, testing their performance comparing the results
with our proposed architecture will be carried out.

REFERENCES

[1] J. Becker, M. Matzner, and O. Miiller, "Comparing
Architectural Styles for Service-Oriented Architectures -
a REST vs. SOAP Case Study," Information Systems
Development, G. A. Papadopoulos, W. Wojtkowski, G.
Wojtkowski et al., eds., pp. 207-215, US: Springer, 2010.

[2] T. Kaewkiriya, R. Saga, and H. Tsuji, “Framework for
Distributed e-Learning Management System,” Journal
of Computers, vol. 8, no. 7, 2013.

[3] C. Liu, and D. Liu, ‘“QoS-oriented Web Service
Framework by Mixed Programming Techniques,”
Journal of Computers, vol. 8, no. 7, 2013.

[4] N. Laranjeiro, M. Vieira, and H. Madeira, “A robustness
testing approach for SOAP Web services,” Journal of
Internet Services and Applications, vol. 3, no. 2, pp.
215-232, 2012. http://dx.doi.org/10.1007/s13174-012-
0062-2.

[5] H. Xu, A. Reddyreddy, and D. F. Fitch, “Defending
Against XML-Based Attacks Using State-Based XML
Firewall,” Journal of Computers, vol. 6, no. 11, 2011.

[6] ZDNet. "SOA and cloud by the numbers: what the data
tells us so far," [viewed 27 November, 2011];
http://www.zdnet.com/blog/service-oriented/soa-and-
cloud-by-the-numbers-what-the-data-tells-us-so-
far/3974.

[7] P. Prescod, “Roots of the Rest/Soap Debate.,”
Proceedings of the 2002 Extreme Markup Languages
Conferences, Quebec, Canada, 2002.

[8] M. zur Muchlen, J. V. Nickerson, and K. D. Swenson,
“Developing web services choreography standards- the
case of REST vs. SOAP,” Decision Support Systems, vol.
40, no. 1, pp- 9-29, 2005.
http://dx.doi.org/10.1016/j.dss.2004.04.008.

[91 G. Mulligan, and D. Gracanin, “A comparison of SOAP
and REST implementations of a service based
interaction independence middleware framework,”
Proceedings of the 2009 WinterSimulation Conference

1080

(WSC), Austin, Texas, pp. 1423-1432, 2009.
http://dx.doi.org/10.1109/wsc.2009.5429290.

[10] R. Battle, and E. Benson, “Bridging the semantic Web
and Web 2.0 with Representational State Transfer
(REST),” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 6, no. 1, pp. 61-69, 2008.
http://dx.doi.org/10.1016/j.websem.2007.11.002.

[11] I. Zuzak, and S. Schreier, “ArRESTed Development:
Guidelines for Designing REST Frameworks,” IEEE
Internet Computing, vol. 16, no. 4, pp. 26-35, 2012.
http://dx.doi.org/10.1109/mic.2012.60.

[12] N. S. Bhuvaneswari, and S. Sujatha, Integrating Soa and
Web Services: River Publishers, 2011.

[13] L. Richardson, and S. Ruby, RESTful Web Services:
O'Reilly Media, 2008.

[14] R. T. Fiedling, “Architectural Styles and the Design of
Network-Based Software Architectures,” University of
California, Irvine, 2000.

[15] D. N. Darji, and N. B. Thakkar, “Comparative Study on
the Features of Different Web Services Protocols,”
International Journal of Research in Computer
Application & Management, vol. 2, no. 9, pp. 102-106,
2012.

[16] InfoQ. "REST and SOAP: When Should I Use Each (or

Both)?," [viewed 26 March, 20127;
http://www.infoq.com/articles/rest-soap-when-to-use-
each.

[17] Geeknizer. "REST vs. SOAP - The Right WebService,"
[viewed 26 March, 2012]; http://geeknizer.com/rest-vs-
soap-using-http-choosing-the-right-webservice-protocol/.

[18] Ajaxonomy. "Web Services, Part 1: SOAP vs. REST,"
[viewed 26 March, 2012];
http://ajaxonomy.com/2008/xml/web-services-part-1-
soap-vs-rest.

[19] K. Jucyte. "Web service implementation with SOAP and
REST," [viewed 26 March, 2012];

©2014 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

http://rudar.ruc.dk/bitstream/1800/2108/1/Web%20servi
ces%20-%20SOAP%20%26%20REST.pdf.

[20] D. L. Ridruejo, and D. Lopez, Sams Teach Yourself
Apache 2 in 24 Hours: Sams Publishing, 2002.

[21] G.-h. Li, H. Zheng, and G.-z. Li, “Building a Secure
Web Server Based on OpenSSL and Apache,”
Proceedings of the 2010 International Conference on E-
Business and E-Government (ICEE), Guangzhou, pp.
1307-1310, 2010.
http://dx.doi.org/10.1109/icee.2010.334.

[22] Wikipedia. "Internet Information Services," [viewed

Septemper 2, 2013];
http://en.wikipedia.org/wiki/Internet Information_Servi
ces.

[23] D. Aivaliotis, Mastering Nginx, UK: Packt Publishing,
2013.

[24] W. Reese, “Nginx: the high-performance web server and
reverse proxy,” Linux Journal, vol. 2008, no. 173, 2008.

[25] H. J. Li, “Research on Restful Web Services in Java,”
Applied Mechanics and Materials, vol. 135-136, pp.
806-808, 2012.

[26]L. Hongjun, “RESTful Web service frameworks in Java,”
Proceedings of the 2011 IEEE International Conference
on Signal Processing, Communications and Computing
(ICSPCC), Xi'an, pp- 1-4, 2011.
http://dx.doi.org/10.1109/icspcc.2011.6061739.

[27] J. G. R. Fielding, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee, Hypertext Transfer Protocol--
HTTP/1.1, RFC 2616, Internet Engineering Task Force,
1999.

[28] D. Forsberg, "RESTful Security," Nokia Research
Center, Helsinki, 2009, [viewed 06 January, 2013];
w2spconf.com/2009/papers/s4p3.pdf.

