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Abstract— In this paper, we propose a framework to design 
and implement a novel RESTful Web server architecture. 
The proposed RESTful Web server architecture is a 
lightweight server that will be less taxing on system 
resources and will therefore handle a greater volume of 
requests. Furthermore, in contrast to the usual servers that 
supports most websites, the proposed RESTful Web server 
architecture is used for hosting RESTful-based Web 
Services. Moreover, the results obtained from our 
experiments show that the proposed architecture 
demonstrates high performance while maintaining proper 
stability. Our Web server is programmed in Java using a 
simple yet flexible web application framework that fulfills 
the needs of modern web application development. It also 
provides developers with a rapid and cost-effective method 
for implementing, deploying and serving a web API 
(Application Programming Interface). 
 
Index Terms—Service-Oriented Architecture (SOA), REST, 
RESTful, Web Server, Web Services, Web API.  
 

I. INTRODUCTION 

Software architecture is an abstraction of the run-time 
elements of a software system. It can be defined by the 
configuration of its elements. Such elements (components, 
connectors, and data) are constrained in their function and 
relationships in order to achieve a required set of 
architectural properties (e.g., scalability, reliability, 
reusability) [1]. A coordinated set of such architectural 
constraints is called an architectural style [1]. 

Web service based applications have been widely 
applied in a variety of domains with the development of 
Service-oriented architecture (SOA) [2, 3]. SOA is an 
architectural style that guides all aspects of creating and 
using services throughout their lifecycle, as well as 
defining and providing the infrastructure that allows 
heterogeneous applications to exchange data. This 
communication usually involves the involvement in 
business processes, which are loosely coupled to their 
underlying implementations. SOA represents a model in 
which functionality is decomposed into separate units 
(services) that can be spread over a network and can be 
united together and reused to create business applications 
[4]. SOA allows the creation of systems using reusable 
components with well-defined service interfaces, these 

components can be published as discoverable services 
over the Internet based on their capabilities [5]. Ninety-
two percent of companies say their SOA initiatives met or 
exceeded business unit objectives, while only eight 
percent say they did not. Additionally, SOA market is 
growing 17% a year to reach $10 billion by 2015 [6].  

Currently, two architectural styles are commonly 
discussed in the context of SOA: firstly, the Simple 
Object-Access Protocol (SOAP) styles and related 
standards (e.g., WSDL). Secondly, styles based on the 
Representational State Transfer (REST) with loosely 
coupled designs similar to resources of the World Wide 
Web. Although the REST vs. SOAP debate is mostly 
ignored in academia, the SOA community is still arguing 
about the pros and cons of each style [1, 7-9]. However, 
REST’s simplicity, beside its natural fit over HTTP, has 
contributed to its status as the best method to achieve a 
desired result for Web 2.0 applications in terms of  
exposing their data [10]. 

The REST style architecture is a main contributor to 
the Web’s success. REST describes how the web as a 
large scale distributed hypermedia systems, have to 
operate to make the most of beneficial properties, 
including scalability, modifiability, performance, 
simplicity, and reliability. To retain usability in the face 
of increasing growth and expansion into new domains, 
the Web must maintain the benefits of the RESTful 
design. However, even though REST principles have 
been known for more than a decade, developing systems 
that conform to them is difficult [11]. 

In this paper, we propose a framework architecture to 
design and implement a RESTful Web server that 
conforms to REST constraints/principles. The proposed 
RESTful Web server as a lightweight server will be able 
to handle more requests since it is less taxing on system 
resources, and provides high performance, and stability. 
This paper is organized as follows. Section 2 provides 
background information on REST style architecture and 
an overview of the most popular Web servers. In Section 
3, we propose our RESTful Web server including its 
structure, requirements and components. Section 4 
illustrates the evaluation and results. Finally, conclusions 
and directions for future study are provided in Section 5. 

II. BACKGROUND AND LITERATURE REVIEW 
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This section reviews literature related to this study. 
First, an overview of the REST style architecture is 
presented. We then provide a review of its benefits. 
Finally, an overview of the most popular Web servers is 
presented. 

A. REST-Style Architecture     
REST style architecture consists of clients and servers. 

Clients initiate requests and servers process them and 
return responses. Requests and responses are built around 
the transfer of resources' representations [1, 12]. A 
resource can be any meaningful information that can be 
named. A representation of a resource is a document that 
captures the intended state of a resource [1, 12]. REST 
style architecture addresses four main goals [1, 12]: 

• Scalability of component interactions; 
• Generality of interfaces; 
• Independent deployment of components; and 
• Intermediary components to reduce interaction 

latency, enforce security, and encapsulate legacy 
systems. 

REST achieves these goals by implementing the 
following principles [1, 12-14], which are: 

1. Client-Server 
Separation of concerns is the principle behind the 

client-server constraints in which clients are separated 
from servers by a uniform interface. By separating the 
user interface concerns from the data storage concerns, 
the portability of the user interface across multiple 
platforms is improved. Also, this improves the servers' 
scalability. 

2. Stateless 
The concept of stateless means that the client-server 

communication is constrained by no client context being 
stored on the server between requests. Each client request 
has to be fully self-descriptive, is considered in isolation, 
and is interpreted only in context of the current resource 
state. Application state is maintained by the clients. This 
makes servers more visible for monitoring and more 
reliable in the face of network failures. 

3. Cacheable 
Clients are able to cache responses in order to improve 

network efficiency.  Cache constraints require that the 
data within a response to a request be implicitly or 
explicitly defined as cacheable or non-cacheable to 
prevent clients reusing inappropriate data in response to 
further requests. If a response is cacheable, then a client 
cache is given the right to reuse that response data for 
later, equivalent requests. This constraint improves 
scalability and performance. 

4. Layered system 
The layered system style allows an architecture to be 

composed of hierarchical layers by constraining 
component behavior such that each component cannot 
“see” beyond the immediate layer with which they are 
interacting. Intermediaries can also be used to improve 
system scalability by enabling load balancing of services 

across multiple networks and processors. They may also 
enforce security policies. 

5. Uniform Interface 
The concept of the Uniform Interface explicates that 

all communication between client and the server is 
conducted using the fixed operation set provided by 
HTTP: GET, PUT, POST, DELETE. A GET method 
retrieves the current representation of the requested 
resource from the server to the client. The PUT method 
allows the client to change the state of the resource by 
modifying its representation and transferring it back to 
the server. The POST method creates a resource on the 
server. DELETE removes a resource from the server. 

Fulfilling these REST style architectural constraints 
will enable any kind of distributed hypermedia system to 
have desirable evolving properties, such as performance, 
scalability, simplicity, modifiability, visibility, portability 
and reliability. In addition, conforming to the above 
constraints is generally referred to as being “RESTful”. If 
a service violates any of the required constraints, it 
cannot be considered RESTful [1, 12-14]. 
B. Benefits of the REST-Style Architecture 

The main benefits of REST style architecture are [15-
19]: 

• The REST it is a simple yet effective technology 
that can be used to create web services. Without 
needing any toolkit, developers need to know the 
Hypertext Transfer Protocol (HTTP), HyperText 
Markup Language (HTML) and Extensible 
Markup Language (XML) in order to implement 
web services. 

• Also, using standard formats as HTML or XML 
ensures compatibility over time. 

• Requests and responses through the REST 
interface can be short. Thus, in terms of bandwidth 
usage, REST is light.   

• REST developers can easily create and modify an 
URI to access different Web resources. 

• With the support for caching, REST provides 
improved response times and server loadings due 
to the totally stateless operation of the REST 
approach. 

• By reducing the need to maintain communication 
state, REST improves server scalability. This 
means that initial and subsequent requests can be 
handled in different servers. 

• Since a single browser can access any resource 
and application, REST demands less client-side 
software to be written than other approaches. 

• With the use of hyperlinks in content, a separate 
resource discovery mechanism is not needed. 

• Less memory consumption than others. 
• Possibility to distribute queries across more than 

one server. 
In terms of testing and troubleshooting. It is easy to 

test and troubleshoot an HTTP REST API since one can 
construct a call with nothing more than a browser and 
check the response inside the browser window itself. No 
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troubleshooting tools are required to generate a request / 
response cycle. 

C. Related Literature: Most Popular Web Servers 
According to the Septemper 2013 Netcraft Web Server 

Survey  (http://news.netcraft.com/archives/category/web-
server-survey/), three servers are currently widely used 
on the Web: the Apache Server from the Apache 
Software Foundation (http://httpd.apache.org/), Internet 
Information Server (IIS) from Microsoft 
(http://www.iis.net/) and the Nginx Web Server 
(http://nginx.org/). Apache is the first most popular Web 
Server in the world with a market share of 47%. IIS is the 
second most popular Web Server with a market share of 
22%, whereas the Nginx come in the third place with a 
market share of 15%. However, this doesn’t 
automatically mean that Apache is better than other Web 
servers. A reason might be that Apache has been around 
longer than others, giving Apache an edge since it’s 
already been integrated into a lot of systems. 

Apache is the most popular Web server and one of the 
most successful open-source projects of all time. Apache 
has proven to be a very stable, scalable, secure, cross-
platform, and flexible Web server in which it facilitates 
interface customization. However, its configuration 
process is complicated and requires profound special 
knowledge. Additionally, there are Web servers that are 
more lightweight and faster than Apache. Although 
Apache scales well and can handle high loads, other Web 
servers might be more appropriate for serving pure static 
content [20, 21]. 

Unlike Apache which is a free open-source Web server, 
Internet Information Server (IIS) is a Web server created 
by Microsoft in which it comes with the server versions 
of Windows and cannot be downloaded separately. IIS 
has a modular architecture. Modules, also called 
extensions, can be added or removed individually so that 
only modules required for specific functionality have to 
be installed. IIS includes native modules as part of the 
full installation. These modules are individual features 
that the server uses to process requests. In addition, IIS 
includes enhanced security features. These features are: 
client certificate mapping, IP security, request filtering 
and URL authorization. However, IIS runs only on 
Windows unlike Apache which runs on almost every 
operating system [22]. 

Although Apache is an excellent open-source Web 
server, Nginx Web server can be considered as an 
alternative with the same functionality, a simpler 
configuration, better performance and efficiency. Nginx 
is a high-performance Web server and reverse proxy 
designed to use very few system resources. Nginx was 
first conceived to be an HTTP server. It was created by 
Igor Sysoev to solve the C10K problem, described by 
Daniel Kegel at http://www.kegel.com/c10k.html, of 
designing a Web server to handle 10,000 simultaneous 
connections. Nginx is able to do this through its event-
based connection-handling mechanism, and will use the 
OS-appropriate event mechanism in order to achieve this 
goal. Like Apache, Nginx is used by some of the largest 
Web sites in the US, including WordPress, Hulu and 

MochiMedia. Nginx is the third-most-popular Web server, 
and it is currently serving more than 112 million Web 
sites [23, 24]. 

III. THE PROPOSED RESTFUL WEB SERVER 
ARCHITECTURE 

Although there are many widely available RESTful 
web service API’s in java and other programming 
languages (e.g, Jersey, JBoss and Restlet), which 
eventually lead to RESTful web services complying with 
the main REST constraints [11, 13, 25, 26], however, (1) 
developing RESTful web services is still a key challenge 
due to the lack of software development frameworks that 
support all REST constraints; (2) most of the RESTful 
web services are typically expected to run over the same 
server which is used to power full blown websites, while 
our proposed server is a standalone RESTful Web server 
concerned with hosting RESTful web services created 
through our own APIs.  

To overcome the above drawbacks, this paper proposes 
the design and implementation of a fully lightweight 
RESTful Web server that follows all the RESTful 
constraints and features, including: 

• Provide a real 100% clean URL (Uniform 
Resource Locator). 

• Dedicated to deploy and host only RESTful web 
services. 

• Providing an auto generated Web Application 
Description Language (WADL) document for 
each service.  

• Automatically provide the user with all the 
available resources for a given service. 

A. Proposed Web Server Architecture 
The proposed Web server uses a multi-threaded 

architecture, by utilizing threads to serve requests, this 
approach basically associates each incoming connection 
to be handled by a dedicated thread, while enabling the 
various threads to easily share data structures. The 
memory requirements for this type of architecture is 
relatively little, as the server initializes a dynamic thread 
pool at start up, the size of the pool varies with workload 
intensity. When load increases, so will the pool size, 
allowing more requests to be processed concurrently, 
leading to reduction of the incoming queue size. When 
the load is low, the number of threads reduces to free up 
memory. 

B. Proposed Web Server Requirements 
• Usability of the Server: The server must be easy to 

use, and not with a lot of configuration and 
complex operation, the server must do almost 
everything automatically, and with little or no 
skills required to manage it. 

• Compliance: The system is tested to be complaint 
on the client-side with all the major browsers like 
Microsoft Internet Explorer 6+, Firefox 2+, 
Google Chrome 3+, Apple Safari 3+, and any 
client that support the HTTP 1.1. 
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server any errors. If the compilation 
process was successful, the deployer calls 
a WADL creator object to generate a 
WADL document for the given service. 
After the deployer has completed all tasks, 
it returns to the caller a success or fail state 
accompanied with failure details that may 
have occurred at any point. 

ii. WADL Creator: WADL creator object is 
called to generate a WADL document for a 
given service corresponding to the 
international WADL document standards. 
The WADL creator first reads the service's 
manifest file and determines whether it is a 
valid one or not. Information required to 
generate the document is extracted from the 
manifest file, and a WADL document is 
created and information is parsed to it in 
XML. After all tasks are completed the 
WADL creator object returns a success or 
failure state back to the caller accompanied 
with failure details that may have occurred 
at any point within the process. 

b) Supporting External Components 
The supporting external components are 

used to respond to certain methods called by 
some of the server's components under the 
Windows operating system, as these methods 
are natively supported under the Linux 
operating system, anyhow they had to be 
satisfied when running the server under 
Windows. Further details address these issues 
and explain how these components support the 
server’s processes under Windows. 

i. rm: under the Linux operating system, the 
“rm” command is used to remove a file or 
folder, and could be used with other 
arguments, however under the Windows 
operating system this command is not 
defined, while a similar command is 
available, it was seen for the best to create 
an external package that would simulate this 
command under windows. A number of 
components within the server call the system 
command “rm”, which is not an issue under 
Linux, using this package ensures that is 
command will also be carried out under 
Windows just as so. Once called, the rm 
object reads the call's arguments and if valid, 
will delete a file or folder as specified by the 
call. 

ii. Javac: The java JDK compiler under the 
Linux operating system can be called by the 
command “javac” accompanied by other 
arguments, however under the Windows 
operating system the full path for this 
command should be stated. As some 
components of the server make calls to the 
Java compiler, the call would work 
flawlessly under Linux, anyhow it would not 
work under Windows. javac component 
locates the Java JDK compiler on the system 

(if any found), passes the arguments to the 
compiler, insuring that any calls using the 
command “javac” under Windows would be 
passed to the compiler with the full proper 
path. 

iii. cp: under the Linux operating system, the 
“cp” command is used to copy a file or a 
folder, the command is accompanied with 
some arguments. Under the Windows 
operating system, a similar command is 
available, however the exact same command 
does not exist. Some of the server's 
components call this system command, 
anyhow it would not work under Windows, 
which is why this component exists in order 
to simulate the functionality of this 
command under Windows. The cp object 
reads a call with its arguments, and is 
responsible for completing the required copy 
action based on the call's arguments. 

2) Internal Components 

a) Listener 
The Listener object is considered to be the lowest 

level component in the server, as well as being the 
most substantial. Its main objective is to receive a 
connection from a client, decide whether to accept 
or deny it, create a new handle object to process the 
request. 

When a new listener object is initiated, it listens 
to a given port for any new connection, once a 
connection request is made, the listener object stops 
listening, and initiates a new listener object to listen 
for any new connection requests, and notifies the 
counter object of one new connection is being 
handled. The listener checks the client's IP against a 
predefined list of denied IP addresses. If this client 
is not found in the list, its connection to the server 
is granted, and a data stream is now opened 
between the client and server for incoming 
payloads. The listener waits for a predefined 
amount of time for the client to make a request. 
Once a request is made, the listener analyzes the 
HTTP header, determines if the request is valid, by 
checking the HTTP request method (valid methods 
are OPTIONS, GET, HEAD, POST, PUT, 
DELETE, TRACE, JEFF, CATS) [27]. Other 
information is extracted from the HTTP request 
header to be added to the log information. A couple 
of header items “x-forwarded-for” and “via” (if 
exist in the HTTP header) are scanned for IP 
addresses, and if found are checked against the 
denied IP, which may lead to the fact that a denied 
client is making a connection to the server through 
a proxy server. In this case the listener will close 
and terminate the connection.  

At this point, the listener object creates a handle 
object to process the request and give back a 
suitable response, once the newly created handle 
object returns the response, the listener returns the 
response to the client by dividing the response into 
several packets (depends on the size of the response 
and the network buffer size at the time). After the 
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response has been delivered to the client, the 
listener notifies the running logger object of the 
transaction made, then waits for further requests or 
terminates, depending on what action was requested 
by the client in the HTTP header item “connection”. 
The maximum number of allowed “keep-alive” 
requests is predefined by the admin in the server's 
configuration. At any point the listener has 
completed its tasks and just before it is terminated, 
notifies the counter object that it has completed its 
work, thus one connection is done with. 

b) Handle 
Generating a suitable response, along with a 

HTTP response header is the main functionality of 
the server, this is the responsibility of the handle 
object. Once a new handle object is created and a 
request is passed to it, the first thing the handle 
checks for in order to determine the response, is the 
HTTP request method. If the request involves 
invoking a service, the handle will search for the 
service, invoke its resources, using the Java JRE 
pre-installed on the system, returns back the 
response, adds to it a suitable HTTP header 
depending on the request and response. Returns the 
whole response to the caller (a listener object), and 
then the handle object is terminated. The handle 
object is built to be able to generate a suitable 
response in every possible case (e.g requested 
resource does not exist, HTTP request version is 
not supported, uniform resource identifier (URI) is 
too long, no response found, wrong method is used, 
or bad syntax is used to reach a specified resource, 
etc.). 

c) Logger 
Each complete transaction within the server 

(connection, handling, response) is logged to an 
external log file, corresponding to the World Wide 
Web Consortium (W3C) log file format standard. 
The logger object is always running as a concurrent 
thread. Its main objective is to receive notifications 
of transactions with their full details and write them 
to the log file. The logger object has a queue of 
transactions waiting to be written to the log file, 
whenever the logger receives a new transaction 
notification, it is added to this queue to be written 
once its turn is due. Two logger objects run within 
the server, the first is to log transactions, the other 
is to log any errors that may occur. Separate log 
files are used for these purposes, which can be 
defined by the admin in the server's configuration. 

d) Counter 
In order to limit the maximum number of active 

connections made to the server, the counter object 
which is always running as a concurrent thread 
keeps count on the current number of concurrent 
connections currently being handled by the server. 
A new connection to the server cannot be initiated 
if the number of current connections has reached 
the maximum allowed connections. The number of 
maximum allowed connections to the server is 
defined by the admin before starting the server in 
the server's configuration. 

e) Controller 

The controller component is always running as a 
concurrent thread, it has one objective, which is 
simply to wait for any keystrokes from the admin, if 
the captured keystroke is a “q” character, the 
controller object will end the server's process. 

D. XML File Schema 
In order to build a web service to run on the 

server, an XML file (manifest.xml) should be 
created for this service, containing a description of 
the service and its resources. A Java class 
(Index.java) should also be created for the service, 
where all the resources server-side code will be 
held. The XML file should comply with certain 
rules in order for the server to be able to 
successfully read and identify resources within this 
service. These rules are: 
• All tags within this file should be placed within 

a <service> tag. 
• The service base attribute tag (<base>) must be 

defined before adding any resource tags. Where 
the base defines the URL of the service on the 
server (e.g, 
<base>http://localhost:8080/f2c/</base>). 

• After the base tag is added, a <resources> tag 
can be placed now to start adding resources to 
the service. 

• For a group of resources within a <resources> 
tag, a <method> tag should be added to let the 
server know of the suitable method clients can 
reach these resources (e.g, 
<method>GET</method>). 

• For each resource, a <resource> tag must be 
added. 

• For each resource, a <name> tag must be 
included to identify the name of this resource 
(e.g, <name>celsius</name>). 

• Another tag should be added for the resource, 
which is the <action> tag, which tells the server 
which Java method to invoke when a client calls 
this resource (e.g, 
<action>@converttocelsius</action>). 

• A <produces> tag should also be added for a 
resource, in order to let the server know what 
MIME type to respond with to the client (e.g, 
<produces>application/xml</produces>) 

• The <description> tag is an optional tag, where 
the developer could add a comment describing 
this resource’s work (e.g, <description>returns 
celsius degree, from fahrenheit 
degree</description>). 

• If a resource is designed to parse one or more 
parameter, a <parameter> tag should be added 
for each parameter. 

• For each parameter, a <pname> tag should be 
added to include the name of this parameter (e.g, 
<pname>fdegree</pname>). 

• A <ptype> tag should also be included to 
determine the type of this parameter (Int, String, 
Double, Boolean) (e.g, <ptype>int</ptype>). 

• A <default> tag is optional, which includes a 
default value for this parameter, for the client to 
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consider when parsing a value (e.g, 
<default>38</default>). 

• The <option> tag is also optional, where it holds 
an optional value for the client to consider for 
this parameter. One or more <option> tag may 
be added for a parameter (e.g, 
<option>100</option>). 

 
The following Table shows an XML file containing 

a description of a service “f2c”( returns Celsius degree 
from Fahrenheit degree): 

TABLE I.  AN EXAMPLE OF AN XML FILE 

 
E. Main Java Class Constraints 

• Each method defined within the class should 
have a string return type. 

• A method should contain each parameter 
defined in the XML file, to be parsed as String. 

• Every method should also parse three static 
variables (remoteAddr, requestURI, String 
reqBody) all of type String, which can be used 
within the method. 

The following Table shows the “Index.java” class 
written as an example for the previous XML file 
example that was specified in Table I: 

 

 

 

 

 

 

 

 

TABLE II.  AN EXAMPLE OF A JAVA INDEX CLASS 

 
 
Note: the XML file, java index class, and any other 

external java classes should be all put together in the 
same directory, which has the name of the service. The 
service’s directory is to be put into the server’s “htdocs” 
directory. 

IV. TESTING AND RESULTS 

For testing purposes, we need to make sure that 
every output of the Web server meets the requirements, 
and we would perform a load and performance test. 
Our test case would be testing the same service that we 
built and used as example to convert from Fahrenheit 
to Celsius. Unfortunately, we were unable to compare 
our results with other Web servers like Apache or 
Nginx since our Web server support clean URL 
whereas Apache and Nginx don’t support a real clean 
URL, which would be a problem. SoapUI 4.5 is one of 
the famous SOAP and REST testing software, and that 
is what we will use in our tests.  

To begin our testing, we need first to initiate a 
soapUI project  as shown by Fig. 2. 

 

Figure 2.  Project Creation. 

Now we add the WADL URL to the project, by 
‘Right Click on the Project  Add WADL’ as shown 
by Fig. 3. 

public class Index { 
public Index() {} 
//@GET 
//produces application/xml 
public String converttocelsius(String fdegree, 
String remoteAddr, String requestURI, String 
reqBody) { 
Response response = new Response(); 
double cel = (Double.parseDouble(fdegree) - 32) 
* 5 / 9; 
response.print("<celsius>"+cel+"</celsius>"); 
return response.getResponse(); 
} 
}

<?xml version="1.0" encoding="UTF-8"?> 
<service> 
      <base>http://localhost:8080/f2c/</base> 
         <resources> 
  <method>GET</method> 
  <resource> 
        <name>celsius</name> 
        <action>@converttocelsius</action> 
        <parameter> 
                               <pname>fdegree</pname> 
             <ptype>int</ptype> 
             <default>38</default> 
             <option>100</option> 
             <option>50</option> 
       </parameter> 
  <produces>application/xml</produces> 
        <description>returns Celsius degree,  
                            from Fahrenheit 
degree</description> 
  </resource> 
        </resources> 
</service> 
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