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Abstract: In this paper, an innovative missing value estimation algorithm called Linear Stepwise 
Regression (LSR) is presented which uses multiple correlated-based samples imputation matrices for 
the final prediction of missing values. The matrices are computed and optimized using linear 
stepwise regression and linear programming methods. The performance of the LSR impute method, 
assessed over five different data sets, has been compared with four imputing approaches, namely 
KNN, LSS, LSimpute3 and LSimpute5 impute methods. Testing results reveal that the LSR impute 
has outstanding prediction ability in the estimation of the missing values problem for some data sets 
and is robust against the increasing rate of missing values. A comprehensive comparison of NRMSE 
on five data sets shows that the LSR impute performs comparative with, if not better than, the other 
missing value estimation methods in this area, and when complemented with other leading methods, 
it appears to be a proper solution to the missing value estimation in gene expression profile. Finally, 
our LSR method is applicable over other various non-bioinformatics data. 

  
 

 
INTRODUCTION 
 
 In spite of containing a considerable 

numbers of missing values, microarray data are 
used in a range of application areas in biology. 
These missing values can significantly affect 
subsequent statistical analysis and machine 
learning algorithms, so there is a strong 
motivation to estimate these values as 
accurately as possible. While many imputation 
algorithms have been proposed [1][2][3][4], 
more robust techniques need to be developed 
so that further analysis of biological data can 
be accurately undertaken. In this paper, an 
innovative missing value estimation algorithm 
called Linear Stepwise Regression (LSR) is 
presented which uses multiple correlated-based 
samples imputation matrices for the final 
prediction of missing values. The matrices are 
computed and optimized using linear stepwise 

regression and linear programming methods. 
The LSR algorithm builds a model based on 
grouping the strongly correlated samples into 
clusters and it imputes the missing values 
using linear stepwise regression algorithm. 
LSR is a complementary algorithm which can 
be used in parallel with any leading imputation 
method. Unlike other methods, LSR 
transforms the genes/samples from the original 
domain into a new domain called R-domain1 
which in turn does not have the limitations of 
the distance matrix-based algorithms. 
Furthermore, LSR implements the idea of 
linear stepwise regression to assign the weight 
into the missing values. 

 
Five different data sets are used in this 

paper for the application of microarray. The 
reason behind using these data sets is because 

                                                 
1 see http://CRAN.R-project.org for a full R 
language discussion. 
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of their type varieties. These sets contain data 
with different characteristics, such as time 
series [5], noisy (Schizophrenia data set) [6], 
highly correlated data (PD data set) [7], cancer 
disease data (CCDATA) [5] and absence of 
patterns (Niehs data set) [8] [9]. By using these 
data sets under different imputation methods, 
we are trying to assess the performance of the 
LSR algorithm compared with other methods. 
In this sense, the use of any imputation method 
for a specific data type should be carefully 
determined. Given the range of data set types 
and the limitations in current algorithms to 
handle different types of data sets, we 
introduce the LSR algorithm. 

 
To perform missing value imputation 

using LSR, three steps are followed. First, the 
experiments are grouped (clustered) in such 
way that highly correlated experiments are 
clustered within the same group. The grouping 
is carried out by an ANOVA test [10] [11]. 
Second, instead of using average or zero values 
to create a complete matrix, we use LSimpute, 
LLS or any other algorithm. In this paper, we 
obtain two LSR3 and LSR5 algorithms when 
applied over LSimpute type 3 and 5 (we call 
them LSimpute3 and LSimpute5 respectively, 
see Bo et al (2004) [12] for more details). 
Finally, multilinear regression (specifically, 
linear stepwise regression) is used to build the 
model and impute the missing values. 
 

A comparative study of our method with 
the previously developed methods, including 
the KNNimpute [1], LLSimpute [3] and 
LSimpute [12] methods has been presented for 
the estimation of the missing values on five 
gene expression data sets. Among different 
algorithms we compared, the LSR5 algorithm 
obtained better or at least comparable 
estimation results with small Normalized Root 
Mean Square Error (NRMSE) on different 
kinds of data sets. The outstanding estimation 
ability of this imputation method is partly due 
to the efficient use of the missing value 
information feature that exists in a multilinear 
regression scheme. This paper consists of nine 
main sections. In the first three sections, we 
illustrate in details the Linear Stepwise 
Regression (LSR) method. In Section 5, we 
introduce our proposed model. Experimental 

results are presented in sections 6 and 7. 
Finally, in Sections 8 and 9 the discussions and 
conclusions are presented and outlined. 
 

1. LINEAR STEPWISE 
REGRESSION (LSR) 

IMPUTATION METHOD 
 

The LSR method is a data mining and 
statistical technique that uses multilinear 
regression to model a linear equation for 
imputation purposes [10][14][15]. It is a data 
mining method, in the sense that it groups the 
most correlated samples into clusters. 
Furthermore, it is a statistical method in the 
sense that it uses linear regression to build the 
model. LSR consists of three main steps: 
Analysis of Variance (ANOVA) test, which is 
used to group the most correlated samples; 
Stepwise regression to build the model; and 
stop criteria to optimize the solution. In the 
subsequent sections we explain each step in 
detail. 
 
 

2. ANALYSIS OF VARIANCE 
 

The Analysis of Variance (ANOVA) 
is a tool that tests the difference between 
the means of two or more groups [10] [11]. 
A one-way ANOVA or single factor 
ANOVA tests differences between groups 
that are only classified on one independent 
variable.  

The advantage of using ANOVA rather 
than multiple t-tests or any other statistical tool 
is that it reduces the probability of a type-I 
error (the error of rejecting a null hypothesis 
when it is actually true - this is the error of 
accepting an alternative hypothesis) [11][13]. 
Making multiple comparisons increases the 
likelihood of finding something by chance-
making a type-I error. 

 
In microarray analysis literature, 

ANOVA test is used as a feature selection and 
classification tool [8]. There are two possible 
ways to deal with microarray data in terms of 
classification. All genes can be used to classify 
a small number of samples in distinct classes 
or all samples can be used to classify a large 
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number of genes in distinct classes. For 
example, in a two-dimensional space it is 
always possible to separate two observations 
perfectly; the same thing is true for three or 
fewer points in a three-dimensional space and 
for n or fewer points in an n-dimensional 
space. This observation has been explained in 
Amaratunga and Cabrera (2004) [8].   
 

ANOVA, on another hand, is also used 
as a feature selection tool. By finding the genes 
with the small p-value that are differentiated 
between two groups of samples, we can state 
that the selected p-values are the most 
differentiated ones in this experiment. For the 
case of only two classes, this approach is 
equivalent to finding the genes with the small 
p-value in an ordinary two-sample t-test [17]. 
Dudoit and Fridlyand (2003) [18] restrict their 
attention to a mixed number of genes that have 
the highest ratio of between-to within-groups 
sums of squares. This corresponds to taking the 
genes with the smallest p-value in an ordinary 
one-way ANOVA setting. Nguyen and Rocke 
(2002) [17] and Radmacher et al. (2002) [19], 
describe similar gene filtering approaches. 
Most authors select a pragmatic number of 
genes so as to make the number of variables 
smaller than the number of samples, whereas 
Amaratunga and Cabrera (2004) [16] fix a 
certain significance level and reduce the 
number of genes by selecting a number of 
principal components, which is again smaller 
than the number of samples. In this paper, the 
Dudoit and Fridlyand (2003) [18] approach is 
used. 
 

The main purpose of applying a 
column-based method is that it results in a 
traditional classification problem, where the 
number of samples is less than the number of 
genes. Furthermore, there are a number of 
problems associated with gene-based approach 
[16] [17]. First of all, there is the issue of bias. 
For example, in a completely random gene 
expression data set with thousands of genes 
and a relatively small number of samples, this 
gene selection procedure will find \statistically 
significant" genes. These genes, thus selected, 
are expected to perform well in classifying the 
data set. Nevertheless, the classification does 
not have any predictive power. The only way 
in which this procedure is valid is if the genes 

are selected only on the basis of the training set 
rather than on the full data set and if a 
validation set is used to estimate the 
misclassification rate. If the significant genes 
were selected on the basis of the whole data set 
and subsequently reused for estimating the 
misclassification rate, a far too noisy picture of 
the procedure would be painted. 

The LSR uses an ANOVA test to find a 
subset (group) of the most differentiated 
samples for each specified missing value at a 
time. As mentioned before, the ANOVA test 
returns the most differentiated samples for 
each missing value, and these samples 
represent the highest p-values. 

 
 

3. THE MULTIPLE 
REGRESSION MODEL 

 
Multiple regression analysis is a general 

statistical technique used to analyze the 
relationship between a single dependant 
variable and several independent ones [13] 
[11]. In the multiple model it is assumed that a 
linear relationship exists between the 
dependent variable Y, and n independent 
variables, X1, X2,..., Xn. The multiple 
regression model equation can be represented 
by: 
 
 

Y = X1 + X2 + ….. + Xn                            (1) 
 

The objective of multiple regression 
analysis is to use the independent variables, 
whose values are known, to predict the single 
dependent value selected [11]. Each 
independent variable is weighted by the 
regression analysis procedure to ensure 
maximal prediction from the set of 
independent variables to the overall prediction. 
 

In multiple regression, the linear 
regression model for determining y given x can 
be represented as y = α + βx + e, where e is 
the error term for which the variance is 
minimized when estimating the model with 
least squares [20]. In single regression, α and β 
(model parameters) are estimated using 

xy βα ˆˆˆ −=  [20] and 
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is the variance of x, and n is the number of 
observations. Here x and y are the averages 
over x1,……., xn and y1,……, yn. Therefore, 
given a variable x, the least squares estimate of 
a variable y can be written as [20]: 
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To create a multiple regression model 
for y1,……., yl given x1,……, xk, we 
have
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The single regression model has two 

parameters to be estimated, while the multiple 
regression model has l(k + 1) parameters [20]. 

 
4. BUILDING THE MODEL 

 
4.1 BUILDING THE MODEL: 

CRITERION FOR MODEL 
SELECTION 

 
The ANOVA test produces a set of 

predictors - number of columns to be used 
to estimate a specific missing value at a 
time. From any set of p predictors chosen, 
2p alternative models can be constructed 
[20][15][14]. This calculation is based on 
the fact that each predictor can be either 
included or excluded from the model. To 
build a model, there is the regression 
model with no X variables, i.e., the 
model iiY εβ += 0 . Then there are the 

regression models with one X variable 
(X1,X2,X3,X4), with two X variables (X1 and 
X2; X1 and X3; X1 and X4; X2 and X3; X2 and 
X4; X3 and X4), and so on.  

In most circumstances, it will be 
impossible to make a complete 
examination of all possible regression 
models. For instance, in our experiment 
there are 30 potential X variables in the 
pool and thus 230 possible regression 

models. Generally, this is a very time-
consuming process. 
 

Model selection procedures or 
variable selection procedures have been 
developed to identify a small group of 
regression models that are good according 
to a specified criterion [20] [15] [14]. A 
detailed examination of a limited number 
of promising models will lead to the 
selection of the final regression model to 
be employed. 
 

Many criteria for comparing the 
regression models have been developed. 
As we mentioned, if there are p potential 
predictors, then there are 2p possible 
models. We fit all these models and 
choose the best one according to some 
criterion. The Akaike Information 
Criterion (AIC) and the Schwarz' Bayesian 
Information Criterion (BIC) are the most 
commonly used criteria. We search for 
models that have small values of AIC or 
BIC, where these criteria are given by [20] 
[10] [14]: 
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pnnSSEnAIC 2+−= lnln         (6) 
 
while 
 

pnnnSSEnBIC ][lnlnln +−=  (7) 

 
Where m is the number of entire columns 
and SSE denotes to error sum of squares. 
For linear regression models, we want to 
minimize AIC or BIC. Larger models will 
fit better and so have smaller error sum of 
squares (SSE) but use more parameters. 
Thus the best choice of model will balance 
fit with model size [10]. BIC penalizes 
larger models more heavily and so will 
tend to prefer smaller models in 
comparison to AIC [10]. AIC and BIC can 
be used as selection criteria for other types 
model too. 
 
 

4.2 BUILDING THE MODEL: 
SEARCH PROCEDURES FOR 

MODEL SELECTION 
 

As noted in the previous section, 
the number of possible models grows 
rapidly with the number of predictors. 
Evaluating all of the possible alternatives 
can be a time-consuming process. To 
simplify the task, we will use an automatic 
search procedure called stepwise 
regression for selecting the model. 
 

Stepwise Regression 
Procedures 

 
Stepwise regression is the most 

widely used strategy for selecting 
independent variables for a multiple 
regression model. The procedure consists 
of a series of steps. At each step of the 
procedure each variable in the model is 
evaluated to see if, according to AIC and 
BIC criteria, it should remain in the 
model. 
 

To build a regression model based 
on n independent observations of a 
response variable Y and a large set of p 
potentially useful predictors X1,X2, . . . ,Xp, 

a sequence of approximating models 
,y1,y2, . . . ,yp, should fit into the form 
[20][10][14]: 
 
 

exxxy kki +++++= ββββ ......22110  (8) 

 
For each choice of k, the chosen model 
ideally minimizes the sum of squared 
residuals, 
 
 

∑ −=
i

iik KYYSSE 2),ˆ(      (9) 

among all models with k predictors. 
 

Suppose, for example, that we wish 
to perform stepwise regression for a model 
containing the p predictors variables 
(samples) obtained from the ANOVA 
process. The criterion measure (see 
equations 6 and 7) is computed for a 
model containing p predictors 
variables/samples. The criterion measure 
is computed for each sample, and of all the 
samples that do not satisfy the criterion are 
removed from the model. If a sample is 
removed in this step, the regression 
equation for the smaller model is 
calculated and the criterion measure is 
computed for each sample in the model. If 
any of these samples fail to satisfy the 
criterion for inclusion in the model, the 
one that least satisfies the criterion is 
removed. If a sample is removed at this 
step, the sample that was removed in the 
first step is reentered into the model, and 
the evaluation procedure is continued. 
This process continues until no more 
samples can be inserted or removed. The 
main advantage of the stepwise regression 
is that if a sample is deleted from the 
model in one step, it could be evaluated 
for possible reentry into the model in 
subsequent steps [20][10][14]. Our LSR 
proposed algorithm that explains all 
previous steps is presented in the next 
section. 
 
 

4.3 BUILDING THE MODEL: 
THE ALGORITHM 
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Impute Algorithm (M,Max,Ref,Output) 
 
Input: 
 

� M : Matrix (m rows and n 
columns) of real with missing 
Values 

� Max : Maximum number of 
columns allowed in the regression 
models 

� Ref : Matrix (m rows and n 
columns) with an initial estimation 
for the missing values 

 
Output: 
 

� Out : Matrix with Missing values 
imputed 

 
Begin 
 

� For each column M(i) in M 
 

- For each column Ref(j), j ≠ 
i 

 
� Calculate the 

absolute value of 
Pearson's 
correlation Cij 

 
- end For 
- S� Select Max Columns 

from Ref with the highest 
values for Cij 

-  If number of columns in 
Ref is less than Max Then 
use all columns except 
column i 

- end If 
- LM � Initial Linear 

Model M(i) as function of 
the columns in S 

- LM � StepWiseP 
rocedure(LM) 

-  For each missing value in 
M(i) 

 
� estimate the 

missing value Mik 
using the linear 
Model LM 

� store the imputed 
values in Out 

 
- end For 

 
� end For 
� Write the output matrix Out 

End 
 
 
5. EXPERIMENTAL RESULTS 

 
5.1 DATA SETS 

The performance of each method 
for predicting missing values is evaluated 
by using five cDNA microarray 
experiments data sets. 
 

The first data set is called Niehs. It 
is based on a study of human cell lines. 
This data set is composed of three dye-
swaps, thus six arrays. The data are from 
the Niehs experiments comparing treated 
and control human cell lines, as described 
in Kerr et al. (2002) [8] [9]. It is publicly 
available at 
http://www.jax.org/staff/churchill 
/datasets/expression/niehs. In the Niehs 
data set there are 1,907 genes and no 
missing values, thus a full intensity data 
matrix of dimension 1,907 × 12. 
 

The second example is gene 
expression data from the study of 
Schizophrenia disease. This data set is 
from Bowden et al. (2005) [6], and has 
been generated in Newcastle University, 
Australia. It is composed of 14 non-
psychiatric control individuals and 14 
patients diagnosed with schizophrenia, 
matched for age and gender. All 
participants in the study have no recent 
history of substance abuse, as there is 
controversy about the effects that certain 
drugs have in schizophrenia. The original 
data file contained 6,000 genes, after 
removing genes with one or more missing 
values, the resulting gene expression 
profile contained 2,901 genes × 14 
experiments. More details are available 
from Bowden et al. (2005) [6].  
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The third data set example is gene 
expression data from typical studies on 
primary tumors (CCDATA) [5]. The 
CCDATA data set is based on samples 
from cervical tumors before and after 
radiotherapy and is composed of 16 dye-
swaps and thus 32 experiments arrays. In 
the original cervical cancer data set, 22% 
of the data were missing, affecting 70% of 
the 14,229 genes. We have removed the 
genes with one or more missing values, 
leaving 4,246 genes. The resulting 
intensity data matrix has 4,246 genes × 64 
experiments. The data is available 
http://genome-
www.stanford.edu/listeria/gut/.  
 

The fourth data set is from an 
infection time series study [5]. Here we 
downloaded all the time course data and 
removed all genes with missing values, 
resulting in a 6,850 × 39 data matrix. The 
data are available 
http://genomebiology.com/2002/4/1/R2. 

 
The last data set is gene expression 

data from a study of Parkinson disease 
(PD) introduced in Brown et al. (2002) 
[7]. In the original file, 17% of the data 
were missing, affecting 30% of the 9,000 
genes. We have removed the genes with 
one or more missing values, leaving data 
from 5,636 genes. The resulting intensity 
data matrix is of dimension 5,636 × 80. 
More detailed information about this data 
can be found in Brown et al. (2002) [7]. 
 

The data sets we used in our study 
went through several processing steps. 
Firstly, they were log-transformed after 
being taken from the image (i.e. after 
normalization). Secondly, the rows and the 
columns which contained too many 
missing values (i.e., 10% and more) were 
excluded. Thirdly, before using the LSR 
method, each of the columns was scaled to 
between 0 and 1, which means the data 
sets are normalized. Mean-normalizing the 
data will further help in regression 
performance using Euclidean Distance. 
Finally, the data sets with these pre-
processing steps were used to construct the 
complete matrix. 
 

Measurements of performance 
 

In order to evaluate the 
performance of the missing value 
estimation methods, we constructed the 
complete matrices by removing all the 
rows containing missing values, and 
randomly created the artificial missing 
values, from 10% to 25% of the entries in 
a matrix. The artificial missing entries 
were introduced in two different ways: 
 

Row-based: Randomly select a 
specific percentage of the entries in the 
complete matrix, and remove them. 
Between 10%-25% are removed in each 
row. 

 
Column-based: Randomly select a 

specific percentage of the entries in the 
complete matrix, and remove them. 
Between 10%-25% are removed in each 
experiment/sample. Column-based method 
results are only shown in this paper. 
 

The performance of the missing 
value estimation is evaluated by 
normalized root mean square error 
(NRMSE).  

 
 

6. RESULTS  
 

Table 1 shows the comparison of 
performance between the imputation 
methods. The results of applying four 
different methods on five data sets are 
shown. In this Table, the results reveal that 
LSR5 method always outperforms the 
LSR3 method. For example, when the 
percentage of entries missing is 20%, the 
NRMSE of the LSR5 reaches 0.10395, 
and the NRMSE of the LSR3 method is 
0.12418 for Niehs data. Figures 1 to 5 
show the performance of the six different 
methods on the five different data sets. 
The horizontal and vertical axes indicate 
the percentage of entries missing in the 
complete matrix and the NRMSE of each 
input scheme, respectively. 

 
Performance comparison with 

other methods 
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Table 1 Comparison of basic LSR3 and LSR5 methods against KNNimpute, LSimpute3, 5 

and LLSimpute with 10% - 25%. 
 

The performance of the LSR impute 
method, assessed over five different data 
sets, has been compared with four 
imputing approaches, namely KNN, LLS, 
LSimpute3 and LSimpute5 impute 
methods. The K-value in the KNN impute 
method was preset as 15, according to the 
recommended range of between 10 and 20 
[1], and both LSimpute3, 5 and the LLS 
impute methods are non-parametric 
methods so they do not require K-value. 
Performance of each method on different 
data sets is shown in Figures 1 to 5. 

 
Niehs data is a challenging 

prediction data set, where a clear 
expression pattern is often absent [8]. 
Figure 1 shows among all other methods, 
the LSR5 method gets comparable 
NRMSE values. When the percentage of 
missing values in the data set is 15%, the 
LSR achieves the best result. And when 
the percentage of the missing values 
reaches 20%, the NRMSE of the LSR is a 

little larger than LLSimpute method but 
still smaller than that of the KNNimpute 
method and LSimpute3. This shows the 
LSR method is comparable with, if not 
better than, the previous methods on this 
data set. 
 

The Schizophrenia and time series 
data (TS) were pre-processed by removing 
all genes containing the missing values. 
Because our experiments are based on 
sample imputation, no samples were 
removed in this experiment, even the ones 
that contain considerable missing values 
rate. From Figure 2 and 3 we can see that 
the LSR5 impute method notably starts to 
outperform the other methods when the 
missing rate is increased especially on the 
Schizophrenia data set. However, when we 
apply LSR5 on TS data, the NRMSE of 
LSR5 is a little larger compared to 
LSimpute5. Generally, the LSR performs 
stably across the noisy data. 
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Relevant to many kinds of human 

cancers, including colorectal, ovarian, 
breast, prostate, as well as leukemia and 
melanomas, which involve much more 
complex regulation mechanisms, 
CCDATA human cancer data requires 
more reliable algorithms for missing value 
estimation. Figure 4 shows the 
performance of each method on this data 

set. In this case, the LSR5 method 
outperforms the other methods, especially 
when the missing rate is increased. For 
example, all the other methods get the 
estimate performance with the NRMSE 
between 0.19788 and 0.38967 for 25% 
missing, whereas our method is 0.19451. 
Consequently, the LSR5 impute method 
performs robustly as the percentage of the 
missing values increase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The PD data is used to test how 
much an imputing method is able to take 
advantage of strongly correlated genes in 
estimating the missing values [7]. We can 
see from Table 1 and Figure 5 that the 
LSR5 method outperforms other previous 

methods. However, in terms of memory 
and running time performances, the LSR5 
method can take better use of strongly 
correlated genes than do the other four 
methods in estimating the missing values. 
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Fig. 3 Performance of the six methods 
on TS data. 

Fig. 4 Performance of the six methods on 
CCDATA data. 

Fig. 1 Performance of the six methods on Niehs data. 
The percentage of entries missing in the complete matrix 
and the NRMSE of each missing value estimation method 
are shown in the horizontal and vertical axes, respectively. 

Fig. 2 Performance of the six methods on 
Schizophrenia data. 
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7. DISCUSSION 
 

Four existing imputation methods 
are used to evaluate the performance of the 
LSR impute method in our research. One 
of the advantages of the LSR method is 
that it makes most use of the information 
from the original data sets. The stepwise 
regression raises the estimation 
performance notably, which contributes to 
the best performance of the LSR method 
among these methods. In the case of the 
KNN and the LLS method, the redundant 
missing values in the samples with many 
missing values are just neglected, while 
the LSimpute simply regards them equally 
when modeling the missing values. 
Another advantage comes from the LSR 
method itself. The LSR method is a 
method based on the structural 
minimization principle (SMP is a family 
of statistical models that seek to explain 
the relationship among the variables. In 
doing so, it examines the structure of 
interrelationships among multiple 
variables) in which the global optimal 
solution is guaranteed [13][11]. The KNN 
method linearly combines the similar 
genes by weighting the average values of 
them. The coefficients used in 
combinations are calculated by using 
Euclidean Distance, which is not an 
optimal measurement for gene or sample 
similarity. This makes the KNN method 
perform worst among all the methods. The 

LLS and LSimpute are methods based on 
linear similarity structure. They share the 
similar linear combination of k-nearest 
genes as the KNN impute, and surpasses 
the KNN impute by optimizing the 
coefficients of the non-missing part of the 
similar genes using the least square 
solution. The LLS and LSimpute methods 
are based on local similarity structure of 
the data set, which draws back its 
performance when the local similarity is 
not very clear. In most cases, the LLS 
method performs worse than LSimpute5 
but better than LSimpute3. 
 

Besides the PD highly correlated 
data, our method also works well on the 
data sets those are more difficult for 
regression-based methods, because of the 
complex regulation mechanisms involved 
as in the case of CCDATA (Figure 4). 
Furthermore, the length of the expression 
profiles in PD data is 80 experiments, 
which is larger than the experiments in the 
other data sets (LSR is not affected by the 
increase in the number of 
sample/experiments as does by most other 
methods). This will make it more complex 
for regression. On the other hand, Figure 3 
shows that the LSR5 method achieves 
comparative results to the previous 
methods. When the percentage of missing 
values becomes too large, the LSR impute 

Fig. 5 Performance of the six methods on PD data. 
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method performs little worse than do the 
LSimpute5. This is partly due to the 
stepwise regression search strategy for the 
parameters sets (the number of samples 
that are chosen form ANOVA step, see 
previous sections for more details). To 
maintain proper parameters sets (number 
of samples), the user should specify the 
range of the parameters being searched, so 
the parameters set might not be the 
optimum. The parameter selection is also a 
problem that has to be solved in the linear 
stepwise regression. Even if the parameter 
set might not be optimum, the result is still 
comparative with other impute methods. 
Thus the LSR impute method performs 
well in present research. 
 

Finally, using any imputing 
algorithm requires the creation of a 
complete matrix. Calculating a complete 
matrix can be carried out by using 
average, zeros or ones as in the case of 
KNN, LLS and LSimpute. However, this 
will cause degradation in the performance 
of the final algorithm results. LSR 
algorithm uses a leading algorithm 
(LSimpute is used in this paper) to create 
the complete matrix which in turn 
increases the chances of getting more 
reliable results. However, if the number of 
samples in microarray is small, the 
performance of LSR declines. 
Consequently, we do not recommend 
using LSR method over 25% missing and 
if the number of experiments is less than 
15. 

 
CONCLUSIONS 
 
In this paper, we introduced the 

Linear stepwise regression (LSR) 
imputation as a novel method for 
estimation of the missing values in gene 
expression profile. Testing results reveal 
that the LSR impute has outstanding 
prediction ability in the estimation of the 
missing values problem for some data sets 
and is robust against the increasing rate of 
missing values. Moreover, our approach 
makes most use of the missing value 
information in the whole gene expression 
matrix by restricting the attention to a 
fixed number of columns that have the 

highest ratio of between- to within-groups 
sums of squares (i.e. which corresponds to 
taking the samples with the smallest p-
value in an ordinary one-way ANOVA 
setting).  

A comprehensive comparison of 
NRMSE on five data sets shows that the 
LSR impute performs comparative with, if 
not better than, the other missing value 
estimation methods in this area, and when 
complemented with other leading 
methods, it appears to be a proper solution 
to the missing value estimation in gene 
expression profile. Finally, although our 
LSR method was examined using cDNA 
microarray data, applications to 
oligonucleotide array data, reverse 
transcription-polymerase chain reaction 
data, and others are obviously 
straightforward. Moreover, our method 
can be applied to various applications data. 
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