
THE IMPACT OF USING DHT IN 3-LAYERED MEDIATOR FRAMEWORK

Qasem Kharma, Raimund K. Ege

Secure Software Artechiture Laboratory
School of Computer Science, ECS234

Florida International University, Miami, FL 33199
{qkhar002 | ege }@cs.fiu.edu

ABSTRACT

Delivering multimedia data efficiently is the goal of
our mediator framework. Before data can be served,
it must be found. Since our data sources are subject
to dynamic change and routes to them subject to qual-
ity of service (QoS) considerations, it is the purpose
of this paper to investigate distributed searching tech-
niques, known as distributed hash tables (DHT), and to
arrive at a suitable search algorithm. The Chord, CAN
and Pastry DHT algorithms are compared and a hy-
brid DHT algorithm is proposed that has the properties
of efficient search while being able to handle dynamic
change in the configuration and QoS situation.

Keywords: mediator, middleware, software archi-
tecture, integration, P2P, DHT.

1. INTRODUCTION

The context of the research reported here is our on-
going effort [1] to define and build a multi-layered
mediator-based multimedia architecture that will pro-
vide a dynamic, scalable framework for telecommu-
nications software environments. The architecture is
based on three layers: a ”presence” layer takes re-
quests from clients and is responsible for caching and
buffering of streams that it receives from the ”integra-
tion” and ”homogenization” layers. XML request and
their decomposition is done at the ”integration” layer.
The third layer is the ”homogenization” where a con-
nection to actual data sources is established. Figure 1
depicts the framework. The ”integration” layer con-
sists of mediators that successively decompose a XML
request into smaller XML requests that are closer to
the data sources that are served-up by the ”homoge-
nization” layer.

In this paper, the integration layer is the only layer
which will be considered. The integration layer rep-
resents a special kind of knowledge which is the com-
posing/decomposing of XML schemata and routes. In-
stead of maintaining a central Schema Repository Server

This material is based on work supported by the National Sci-
ence Foundation under Grant No. HRD-0317692.

which manages and handles all schemata, we opt for a
distributed search mechanism that uses the mediators
in the integration layer as nodes in a Distributed Hash
Table (DHT) approach.

DHT algorithms can be classified into three cate-
gories [2]: Skiplist-like routing algorithms such as the
Chord algorithm, Routing-in-Multiple dimensions al-
gorithms such as the CAN algorithm, and Tree-like al-
gorithms such as the Pastry algorithm. Another schema
is to classify DHT algorithms according to their basic
routing geometries [3], such as tree, hypercube, but-
terfly, ring, XOR, and hybrid. The general idea of
DHT is that each node maintains information about
its neighbors in the system: no node has all the infor-
mation, and some information is duplicated so when
a node fails, the whole system will not fail. This pa-
per describes and evaluates three of these algorithms
and proposes a DHT-based search algorithm for our
mediator-based architecture.

The reminder of this paper is organized as follows:
Section 2 illustrates three DHT algorithms and their
characteristics. Section 3 compares these algorithms.
Finally, Section 4 adapts an algorithm to be imple-
mented in our mediator architecture.

2. DHT LOOKUP ALGORITHMS

In peer-to-peer (P2P) systems where there is no cen-
tralized unit and all nodes (peers) have the same com-
putation power, many problems arise such as secu-
rity, scalability, administration, and more. Locating
data files in the distributed P2P environment is essen-
tial since many systems are naturally distributed. The
most difficult challenge in P2P is how data can be
found in a large, scalable P2P system without relying
on a central server [2]: if this server fails, the system
will fail. To avoid having a central failure scenario,
many algorithms based on DHT were proposed in the
past few years. Instead of having a central server, those
DHT algorithms use a DHT in which each node main-
tains some knowledge about some other nodes (but not
all). The general purpose of these algorithms is to map
a value onto a key using a hash function. Although the

Cop
y R

igh
ts 



Fig. 1. Three-Layered Mediator Architecture

general format of the value is a node IP address, the
value can be any meaningful value for the system to
be built such as document name.

[2] classifies DHT algorithms into three categories:

1. Skiplist-like routing algorithm: The Chord algo-
rithm [4,5] is an example of skiplist-like routing
algorithm. In Chord, the hash function assigns
a m-bit (where m is the number of the bits used
for storing the key in binary) identification key
using SHA-1 [6] as a base function to map an
IP address onto a key. The nodes in the system
are arranged in an identifier circle. Each node
on this circle maintains a finger table containing
the IP addresses of n+2i−1 successors where n
is the node ID and 1 ≤ i ≤ m. In other words,
this finger table maintains the IP addresses of
halfway, quarter-of-the-way, eighth-of-the-way,
and so forth. Section 2.1 discuss Chord algo-
rithm in more detail.

2. Routing in multiple dimensions: The CAN [7] is
an example of routing in multiple dimensions.
Each node in CAN maintains a chunk of the
DHT called zone. These zones are distributed in
d-dimension. In addition to storing a chunk of
the DHT in the zone, each zone maintains infor-
mation about its neighbors in the d-dimension.
Section 2.2 describes this algorithm in more de-
tail.

3. Tree-like algorithms: Tree-like algorithms, such
as Pastry1 [8, 9], Tapestry [10], and Kademlia

1Using Pastry in this paper as an example of the Tree-Like algo-

[11], use a structured prefix to maintain the loca-
tion of nodes. Each node maintains IP addresses
of some other nodes in its leaf. For instance,
Kademlia algorithm assigns 160-bit IDs to the
nodes in the P2P system and treats those nodes
as leaves in a binary tree. Tapestry [10] main-
tains routing mesh which is an overlay network
that links between the system’s nodes that share
prefix. Tapestry takes in the consideration the
stretch which is the ratio of the actual distance
to the shortest distance. In section 2.3 , Pastry
algorithm will be discussed in detail as an ex-
ample of the Tree-like algorithm category.

2.1. Chord Algorithm

Chord was proposed by [4, 5], and one of its advan-
tages is its simplicity. The algorithm uses a consistent
hashing function such as SHA-1 to assign a m-bit key
or identifier to each node. The identifiers which repre-
sent nodes are ordered on an identifier circle or Chord
ring modulo 2m. Thus, Chord has a ring geometry [3].

Like adding a node, adding a key is done using a
consistent hash function to assign a key identifier to
the key to be added. Unlike a node identifier, a key
identifier is generated by hashing the key itself while a
node identifier is produced by hashing the IP address.
After generating a key identifier, the key will be as-
signed to the first node whose identifier is equal to or
greater than the key’s identifier. This node is called

rithms does not mean that Pastry has more or less feature than the
other algorithms in this group. Each algorithm has its own features
and comparing algorithm within the same category is beyond the
scope of this paper.

Cop
y R

igh
ts 



the successor node of the key k, and this function is
denoted by successor (k).

The finger table is where the Chord algorithm main-
tains additional routing information in each node be-
sides the successor of the node. Each node maintains
a finger table which includes the identifiers of nodes
that succeed the node n by at least 2i−1 on the Chord
ring where 1 ≤ i ≤ m and each node maintains m en-
tries which may have duplicated values in its finger ta-
ble. Although the finger table contains m entries, only
O(log2 n) entries are distinct since some of the entries
will be duplicated. The Chord algorithm maintains the
following:

• finger[k]: first node on the circle that succeeds
(n + 2k−i) mod 2m and 1 ≤ k ≤ m

• successor: the next node on the Chord ring

• predecessor : the previous node on the Chord
ring

To locate a key, the node which received the re-
quest sends the request to the node that immediately
precedes to that key. If the key is between the node id
and the first successor, the request will be forwarded
to the successor. Otherwise, the node checks the finger
table to find an immediately predecessor to the key.

P2P assumes a dynamic joining and leaving of nodes.
The Chord algorithm runs a ”stabilization” protocol to
ensure that each node’s successor pointer is up to date,
and fix fingers function periodically to make ensure
that the finger table is correct, and check-predecessor
to ensure that its predecessor is available. Adding a
new node requires the successor pointer to be fixed
while the finger table will be fixed eventually by run-
ning the ”stabilize” procedure periodically.

It is highly recommended that a list of 2(log2 n)
successors be maintained in each node. Adding a new
peer or removing an existing one can be achieved by
O(log2

2 n) messages to maintain the successors’ lists
[12, 13]. A ”stable state” is a state in which the con-
tents of all routing tables contain correct information
(pointers and finger tables). Although the Chord sys-
tem will not usually be in a ”stable state”, Chord algo-
rithm can route the request correctly2 in O(log2 n).

2.2. CAN

The CAN [7] organizes nodes in virtual d-dimensional
Cartesian coordinate space on d-torus; thus, CAN has
hypercube geometry [3]. This space is divided among
all nodes in the system, and each node maintains a
chunk or zone of the hash table of its adjacent zones.
Like Chord, CAN does not enforce any hierarchal struc-
ture of naming. The CAN’s virtual space is used for
storing the (key, value) pairs. The key is mapped in
the space using a hash function. Then, the pair (key,

2the proof of Chord correctness can be found in ”MIT LCS Tech
Report” http://www.pdos.lcs.mit.edu/chord/

values) will be stored in the node that owns the corre-
sponding zone in which the mapped point is lying.

A node in the CAN network maintains a coordinate
routing table of its immediate neighbors in the virtual
space. Two nodes are neighbor in CAN if they share
d-1 edges in the virtual space and are adjacent in one
dimension.

When a node receives a request, it routes the re-
quest towards its destination by forwarding it to the
closed neighbor to the destination. There are many
available routes from a source to a destination, so the
receiver node routes the request to the best available
path using a greedy algorithm. Thus; the path is build-
ing dynamically, and a node failure will not affect the
CAN algorithm. The greedy forwarding algorithm fails
when a node looses all its neighbors in a certain direc-
tion. In this case, an alternative multicast algorithm
such as expanding ring search can be used. The rout-
ing process can be achieved in O(N

1
d ).

Adding a new node to a CAN system depends on
the number of dimensions. Only O(d) nodes, the split
node and its neighbors, will be affected. The new node
joins the system by finding a zone in the system and
split that zone between the old and new node.

When a node wants to leave the system voluntary,
it will return its zone to one of its neighbors. The
neighbor which will take over must be either able to
merge the two zones into a valid zone or handle the
smallest origin zone.

In CAN, nodes update their zone coordinates by
sending periodic update messages which include the
sender’s coordinates to its neighbors. Every node in
a CAN system sends a periodic update message. A
node failure can be discovered when a node update
message is not received by its neighbor for long time.
The node which discovered the failed node will set
a takeover timer. When the timer is expired, it will
send a ”TAKEOVER” message including its own zone
value to all the failed node neighbors. When a node
receives a ”TAKEOVER” message, it will check the
zone value in the message. If the zone value in the
message is smaller than its values, the receiver will
cancel its own timer if it was already initiated. Other-
wise, the receiver will start a ”takeover” process.

In case of node failure, a ”takeover algorithm” en-
sures one of the failed node’s neighbors will take over.
The data stored in the failed node’s DHT will be lost
temporary until the state is refreshed by the data holder.
The data holders periodically refresh the pointers which
are stored in the DHTs to their data.

2.3. Pastry Algorithm

Pastry [8, 9] maintains nodeIds of 128-bit. Each node
in Pastry algorithm maintains a state table which has
at most (2b) ∗ dlog2b ne + L + M entries (when M
and L = 2b,then the state table will be at most (2b) ∗
(dlog2b ne+ 2) where n is the number of the nodes in
the system, and b is a configuration number, usually

Cop
y R

igh
ts 



4). The nodeIds and the keys are sequences of digits
of base 2b.

Each node in Pastry maintains a state table which
maintains three kind of information: a routing table, a
neighborhood set, and a leaf set. A node’s routing ta-
ble maintains information about the other nodeIds that
shares a prefix with the node. Each row in the rout-
ing table represents prefix of length i where 0 ≤ i <
dlog2b ne . And, each row contains 2b which are all
possible values at the digit i + 1 where i is the row
number. Some of those possible nodeIds do not ex-
ist; thus, each row will contain at most 2b. Note that
one entry in each raw will be the current nodeId. The
nodeIds in the routing table are chosen according to
a proximity metric which is used for determining the
nodeId to be maintained in the current node according
to a predefined criterion, such as the number of routing
hops or geographic distance. Hence, the routing table
is composed of O(2b ∗ dlog2b ne) nodeIds. A node’s
leaf set contains L nodeIds such that L/2 nodeIds are
the numerically closest largest nodeIds and L/2 are the
numerically closest smallest nodeIds. A node’s neigh-
borhood set maintains information about M nodeIds
which are closed to the nodeId according to proxim-
ity metric. The values of M and L can be either 2b

or 2 ∗ 2b. The routing table maintains a tree geome-
try while the leaf set and neighborhood set maintains
a ring geometry; thus, Pastry has hybrid geometry [3].

Unlike Chord and CAN, the Pastry algorithm rout-
ing is based on seeking a nodeId that shares as long as
possible prefix with the request key. When node ”A”
receives a request with key K, the node ”A” checks
whether K is within its leaf set range or not. If K
is within the leaf set range, the message will be for-
warded to the minimal nodeId within the leaf set. If
K is not within the leaf set range, the node will check
its routing table for a nodeId which has at least one
digit longer with K than the current nodeId. If no
such nodeId exits, the message will be forwarded to
the nodeId which is numerically closest to the K. Such
nodeId can be found in either the routing table or neigh-
borhood set. The routing in Pastry requires at most
dlog2b ne since at most cases the routing will use the
routing table.

When a new node wants to join the system, it must
know about a nearby node in the system. For example,
the new node can find such a node using IP multicast
or inquiring the system administrator. The new node
sends a ”join” message to the ”nearby” node. Then,
the ”nearby” node routes the message to an existing
node that has a closest numerical id to the new node.
All nodes on the path from the ”nearby” node to the
closest numerical id to the new node send their state
tables. The new node will build its state table based
on those tables and may request some additional state
tables. The new node’s initial neighborhood set will be
as same as the ”nearby” node’s neighborhood set, and
the new node’s initial leaf set will be as same as the

closest numerical id node. The new node routing table
can be constructed from the state tables which were
sent to the new node. Assume that there is no common
prefix between the new node and the ”nearby” node;
then, the first row in the new node routing table can
be obtained from the ”nearby” node. The second row
can be obtained from the second node on the routing
path since the Pastry algorithm routes the request to
the node which has one more digit in its prefix with
request key, and so forth. After constructing the new
node’s state table, the new node will inform any node
which needs to be informed of its arrival.

The Pastry algorithm uses ”lazily” repairing. In
other word, when a node is discovered not to be avail-
able, an action will be taken to update the affected state
table. Since the leaf sets of adjacent nodeIds overlap,
the live node which discovers a failed node in its leaf
set will update its leaf set by retrieving the leaf set of
one of its neighbor nodeIds. If the failed node is in the
neighborhood set, the live node will ask its neighbors
for their neighborhood sets and measure the distance
with the nodes in them and chooses the most appro-
priate one. If the failed node is in the routing table,
the live node will ask another nodeId in the same row
for an entry in its routing table in the same row and
column of failed node. If no such node exists, the live
node will contact a node in the next row.

3. COMPARING CHORD, CAN, AND PASTRY

The purpose of this section is to highlight the features
of each of these algorithms and to analyze their com-
plexity. Each of those algorithms has many good fea-
tures. In general, it is impossible to describe a general
algorithm as the best or ultimate solution.

Most of DHT algorithms share some common fea-
tures such as scalability, maintaining knowledge about
some neighbor nodes in the system, and trying to min-
imize the number of messages sent over the network
to maintain systems. Each of the aforementioned al-
gorithms maintains these properties with different ap-
proaches. Minimizing the number of messages is crit-
ical in P2P, and it is the criteria used to measure the
system complexity. P2P complexity is considered by
two issues: messages used to route a request and mes-
sages used to maintain the system.

The idea of DHT is that each node in a system
maintains information about some other nodes in that
system, and the system will use this stored informa-
tion to route a request. As aforementioned, Chord
maintains information about log2 n finger entries and
r successors (r is recommended to be 2 log2 n). The
only required information in Chord is the immediately
successor ID, and the others are used to improve the
performance. Each node in a CAN system maintains
information about the nodes that share d − 1 edges
in the virtual space and be adjacent in one dimension
with the node; thus, each node needs to maintain infor-

Cop
y R

igh
ts 



mation about O(2d) nodes. Pastry uses a different ap-
proach in which every node maintains a state table that
includes three kind of information: a routing table–
nodes which share a prefix with the node, a neigh-
borhood set– the numerically closest nodeIds, and a
leaf set– closed to the nodeId according to proximity
metric; hence, each node in Pastry maintain O(2b ∗
(dlog2b ne + 2)) nodeIds.

Another important property is the degree of free-
dom in choosing nodes to build a routing table and
in choosing the routing path. A node in a CAN sys-
tem has only one possible neighbor set, but it can have
several possible routing paths since CAN can route in
any direction, unlike the tree geometry which limit the
possible routing path to one path. On the other hand,
nodes in Chord or Pastry have many possible valid
neighbor sets. Pastry, as an example of tree geometry,
can choose a node’s routing table from n(log2 n)/2 pos-
sible routing tables. However, after constructing the
routing table, only one path can be selected. Finally,
if a node in Chord has the freedom to choose its suc-
cessors, for instance based on some proximity metric,
n(log2 n)/2 possible different successors can be chosen
to construct the list. In chord, (log2 n)! possible path
exists between two nodes having distance O(n). In a
Pastry system, information maintained in each node is
based on proximity selection to choose the ”closest”
nodeId. This approach can be implemented in Chord
to select successors, but it cannot be implemented in
CAN.

Not only is it important to maintain as little as pos-
sible information in each node, but also the cost of
maintaining this information valid when a node is join-
ing or leaving the system. This cost is measured by the
number of messages needed to be sent to maintain the
routing information. In Chord, O(log2

2 n) messages to
maintain the successor list which is sufficient to route a
request. Also, Pastry needs O(log2

2 n) messages to be
sent to maintain its routing information. While, CAN
needs O(d) since the split node and its neighbors need
to be updated.

Chord and Pastry route a user request to the des-
tination in O(log2 n) messages, but CAN depends on
the number of the system’s dimensions. The lookup
cost in CAN is O(n

1
d ) messages where d is the num-

ber of dimensions. Thus, if d = log2 n, Chord, CAN,
and Pastry lookup cost are O(log2n). However, it is
impossible to maintain d = log2 n since the number of
nodes in P2P systems is not fixed and can be changed
at any time.

4. THREE-LAYERED MEDIATOR
ARCHITECTURE

4.1. The Architecture

A mediator handles the incongruence between client
request and source data. For our target - telecommu-
nication software - a single mediator does not suffice.

The source data will be mediated by successive medi-
ators into a form acceptable to the client: the media-
tion is done by chains of successively connected me-
diators. Since the source data can be collected from
multiple sources, the chain will split at points: actually
forming a tree. Since our target software must han-
dle multi-media data in a secure and quality-oriented
(QoS) fashion, the building of the mediation tree will
not be static but rather it will grow and shrink, even
data sources might change. In summary, our research
is focused on a dynamic architecture for telecommuni-
cation multimedia delivery software. This architecture
which features 3 layers: presence, integration, and ho-
mogenization. Presence layer is the interface to the
client, which can be any computing device such as
a computer, a PDA, or any special purpose device;
the presence layer is also responsible for caching and
buffering data streams. Integration layer analyses re-
quests, finds connectors, and forms the Integration Data-
Structure Graph - IDS [14–16]. Homogenization layer
translate heterogeneous data sources into XML for-
mat [1].

Within this architecture, not all mediators are the
same. We differentiate between three kinds of me-
diators: mediator-composer deployed in the integra-
tion layer, mediator-presenter deployed in the pres-
ence layer, and mediator-connectors in the homoge-
nization layer. The client first connects to a mediator-
presenter which will be responsible for caching data,
converting from/to client format to/from composer for-
mat. Mediator-composers’ functionalities include de-
composing/composing schema and finding path(s) to
the connectors. A special kind of mediator-composer
is called the Global Mediator which will be responsi-
ble for receiving and handling a user request. A new
Global Mediator is elected for every new request based
on predefined QoS criteria. The Global Mediator for-
wards the request to other mediator-composers. At
the lowest level of the mediator hierarchy, mediator-
connectors are located. Data sources can be accessed
through mediator-connectors only.

Unlike mediator-composers, mediator-connectors
will not play any role in routing a request. The mediator-
connector’s role is an interface between the mediator
system and data sources by mapping the data sources
into XML schemata.

The user’s request is sent to a Global Mediator [1].
The Global Mediator receives and responds to a XML
request. More than one mediator-composer will need
to cooperate to handle a single request. The DHT will
be implemented in the mediator-composers of the sys-
tem. Once the connector, which maps the requested
data, is reached, the Integrated Data-Structure Graph
will be composed by the Global Mediator and this tree
will be forwarded to the mediator-presenter which will
use it to stream data directly to/from the mediator-
connectors.

Cop
y R

igh
ts 



Table 1. DHTs Properties (Note: Space complexity was calculated based on the recommended values. In
CAN,assume that the space is partitioned into n equal zones.)

Property Chord CAN Pastry
Number of nodes in a routing table 3 log2 n 2d 2b ∗ (dlog2b ne + 2)
Number of possible routing tables n(log2 n)/2 1 n(log2 n)/2

Messages to maintain the system O(log2
2 n) O(d) O(log2

2 n)
Number of hops O(log2 n) O(dn

1
n ) O(log2 n)

Symmetry Asymmetric Symmetric Symmetric

4.2. Using a DHT in the architecture

All mediator-composers need to cooperate in order to
find the connector(s) to the desired data source(s). In
order to find the connector(s), the route from the Global
Mediator through composers can be found using DHT
instead of having a central repository of the connec-
tors’ XML schemata. Although it is possible to use
one of the aforementioned DHT algorithms by defin-
ing what values will be mapped, we elected to build a
hybrid algorithm of Chord and Pastry: this new algo-
rithm maintains some features of both but adds impor-
tant Quality of Service (QoS) criteria.

Unlike CFS [17] which is a file storage for blocks
based on Chord, and PAST [18] which is a file storage
for files based on Pastry, the mediator does not dis-
tribute the data in the data sources among the composer-
mediator. The mediator system needs only to distributed
pointers to the data which will be accessed through
connectors.

Only mediator-composer plays a role in routing.
The composers are distributed on a logical ring, like
Chord. Unlike Chord, the composers maintain suc-
cessor list, predecessor list, finger table, and a list of
most recent reached composers. The list of most re-
cent reached composers is to maintain information about
the composers which could solve last few requests.
Recall that although the 3-layer mediator system is
flexible and can be run for any problem domain, in
practical the system will be installed for a specific do-
main. Therefore, there are some keywords will be fre-
quently repeated in clients’ requests. For instance, if
the system is installed in a medical system, words like
patient, name, xray, insurance, and so on will be fre-
quently repeated.

The first thing is to decide what values will be dis-
tributed. In our architecture, all messages between me-
diators are in XML format and each composer main-
tains some XML schema which will be used to de-
compose/compose the XML request in order to match
a XML schema that is stored in a connector. When
the system administrator adds a new data source by
starting a new connector, the connector will convert
the data source structure into XML schema and send
the schema to a composer. Then, the composer coverts
the XML schema into its corresponding tree. Next, the
hash function maps the XML tags or elements which

are now nodes in the tree onto keys which will be dis-
tributed over the peers.

The mediator-composers decompose the incoming
request or simplify the incoming request by adding
subtree(s) to the original request until all the tree leaves
representing connectors or no further decomposing can
be done. Once all the leaves refer to connectors, the
composer creates dependency relationships between
common nodes.

Second, when a new node (composer) wants to
join the system, it will send a ”join” message like Chord.
The new node will join the P2P system if it is a com-
poser. When a new connector joins the system, it will
handle its XML schema to any composer on the ring.
The connector will not be added to the ring since it
will not play any role in finding paths.

Finally, the system maintains the validity of its peers
using a ”lazily” update mechanism, similar to Pastry.
The system is not aggressive to maintain a stable state.
When a node or a composer forwards a request to an-
other node, it sets a timer to receive an acknowledge-
ment message. The peer (composer) starts the recov-
ery mechanism if the acknowledgement message is not
received with the timeout.

In short, our algorithm looks similar to Chord, but
employs a proximity metric for QoS consideration, which
is an idea gleaned from Pastry. Applying this DHT al-
gorithm will enhance the performance in the mediator
framework.

4.3. Message Format

There are several benefits of using XML documents in
the mediator architecture: it helps with integration and
naming; follows standards such as JXTA–a collection
of protocol for P2P with Java, and the ease of con-
version from/to a graph to/from XML. In maintaining
the P2P ring, the standard JXTA [19] is used. For de-
tail about the JXTA protocols see [19]. In this section,
the general XML [20,21] schema for messages among
composers is explained as follows:

Cop
y R

igh
ts 



<request>
<xs:attribute name = ”request-ID”>
<xs:attribute name = ”client-ID”>
<xs:attribute name=”presence-mediator-ID”>
<xs:attribute name=”global-mediator-ID”>
<xs:attribute name=”request-text”>

</request>
<token>
<xs:attribute name=”token”>
<xs:attribute name=”classification”>
<xs:attribute name=”destination”>
<xs:attribute name=”destinationID”>

</token>
<decompose>
<xs:attribute name=”decompose-request-ID”>
<xs:attribute name=” decomposer-ID”>
<token>
<xs:attribute name=”token”>
<xs:attribute name=”classification”>
<xs:attribute name=”destination”>
<xs:attribute name=”destinationID”>
</token>

</decompose>
All the elements in the request section are manda-

tory. The client will send the request to a presence–
mediator-presenter which will send an election request
to a composer. Once the global-mediator is chosen,
the mediator-presenter will fill all the attributes. The
mediator-presenter generates a unique request ID, adds
the client ID which also will be used for security and
privilege checking, adds the presence (mediator-presenter)
unique identifier ID, adds the global-mediator ID, and
attaches the request as a string. This section will not
change unless the global-mediator or the mediator-presenter
fails; otherwise, it will be the header for any further
messages related to this request.

The global mediator will tokenize the request. Ini-
tially, all the tokens’ types will be marked as ”unknown”,
their destinations’ types are nil, and their destinations’
IDs are nil. These values will be filled while the re-
quest is in process. The token classification can be
unknown, keyword, or value. An ”unknown” type has
no match in either composers or connectors. A ”key-
word” has a match in either composer or connector. In
short, ”keywords” at the lowest level point to element
identifiers in a connector’s XML schema, while ”val-
ues” point to values stored in the data source. The to-
ken section does not need to be in all messages regard-
ing the request. However, the final response from the
global-mediator to the presence-mediator must have
the token section. The ”destination” can be either con-
nector or composer that stores the corresponding XML
schema to solve or handle that keyword.

The ”decompose” section is a composition of the
first two sections. This section is used when a com-
poser, including the global mediator, wants to decom-
pose or break a request into sub-requests. A new sub
request ID is generated for each decomposition mes-
sage. Recall that the original request ID will not be

affected since it is maintained by the request section.
The ID of the composer which generated this compo-
sition message will be maintained in the ”decomposer-
ID” which plays a similar role to the global mediator
to this sub-request, except it will not generate an IDS
graph. The decomposer returns the XML schema for
the sub request which is a part of the IDS but does not
generate it. Note that we don’t maintain information
about the target since it will be maintained by the P2P
messages.

5. CONCLUSION

Implementing the DHT concept in our mediator archi-
tecture improves the scalability and fault-tolerance in
the system. Besides, some QoS criteria, such as choos-
ing the best neighbor based on the bandwidth, can be
embedded in the system to improve its performance.
The Chord algorithm provides a simple way to imple-
ment the DHT and adds provable correctness (reliabil-
ity) to the system, but it requires too many messages to
maintain the system. The CAN algorithm routes mes-
sage in multiple, logical dimensions. The problem in
CAN is that the space-versus-number of the hops (the
path length) decision must be made before implement-
ing the system. Although the Pastry algorithm needs
more information to be maintained in each node, it
supports an interesting use of proximity metric. Thus,
a hybrid version of Chord and Pastry algorithm is cho-
sen for our architecture. Like Pastry, a proximity met-
ric will be implemented to maintain QoS and to use
the lazily update mechanism to maintain the system.
Besides, other characters such as adding a node, finger
tables, and successor lists will be maintained.

Acknowledgment
The mediator system was implemented by five under-
graduate students:
Erik Hamlin<erik5@myrealbox.com>;
Juan Braceras<fijijuan@aol.com>;
Levi Teitelbaum<levibaum@yahoo.com>;
Roberto McQuattie<quattie@yahoo.com>;
Eduardo Mosaihuate<emosaihuate@msa.com>

6. REFERENCES

[1] R. K. Ege, L. Yang, Q. Kharma, and X. Ni,
“Xml based multimedia delivery framework
for telecommunications environments,” Florida
International University, SSA LAB, Miami, FL,
Tech. Rep. 2003-1, July 2003, (to appear in
I-SPAN 2004). [Online]. Available: mediate.cs.
fiu.edu

[2] H. Balakrishnan, M. F. Kaashoek, D. Karger,
R. Morris, and I. Stoica, “Looking up data in p2p

Cop
y R

igh
ts 



systems,” Communications of the ACM, vol. 46,
no. 2, Feb. 2003.

[3] K. P. Gummadi, R. Gummadi, S. D. Gribble,
S. Ratnasamy, S. Shenker, and I. Stoica, “The
impact of dht routing geometry on resilience and
proximity,” in Proc. of ACM SIGCOMM, Aug.
2003.

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan, “Chord: A scalable peer-
to-peer lookup service for internet applications,”
in Proc. of ACM SIGCOMM, San Diego, Aug.
2001.

[5] I. Stoica, R. Morris, D. Liben-Nowell, D. R.
Karger, M. F. Kaashoek, F. Dabek, and
H. Balakrishnan, “Chord: A scalable peer-to-
peer lookup protocol for internet applications,”
IEEE/ACM Trans. Networking, vol. 11, no. 1,
Feb. 2003.

[6] U. D. of Commerce, “Secure hash standard,”
NIST National Technical Information Service,
Tech. Rep. FIPS 180-1, Apr. 1995. [Online].
Available: www.itl.nist.gov/fipspubs/fip180-1.
htm

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker, “A scalable content-addressable
network,” in Proc. of ACM SIGCOMM, San
Diego, CA, Aug. 2001.

[8] A. Rowstron and P. Druschel, “Pastry: Scalable,
distributed object location and routing for large-
scale peer-to-peer systems,” in Proc. of the 18th
IFIP/ACM Int’l Conf. on Distributed Systems
Platforms, Heidelberg, Germany, Nov. 2001.

[9] M. Castro, P. Druschel, Y. C. Hu, and A. Row-
stron, “Topology-aware routing in structured
peer-to-peer overlay network,” Microsoft Re-
search, Tech. Rep. MSR-TR-2002-82, 2002.
[Online]. Available: ftp.research.microsoft.com/
pub/tr/tr-2002-82.pdf

[10] K. Hildrum, J. Kubiatowicz, S. Rao, and
B. Zhao, “Distributed object location in a dy-
namic network,” in Proc. of 14th ACM Symp. on
Parallel Algorithms and Architectures (SPAA),
Aug. 2002.

[11] P. Maymounkov and D. Mazieres, “Kademlia: A
peer-to-peer information system based on the xor
metric,” in Proc. of the 1st International Work-
shop on Peer-to-Peer Systems. Cambridge, MA:
Springer-Verlag version, Mar. 2002.

[12] F. Dabek, E. Brunskill, M. F. Kaashoek,
D. Karger, R. Morris, I. Stoica, and H. Balakrish-
nan, “Building peer-to-peer systems with chord,
a distributed lookup service,” in Proc. of the 8th

Workshop on Hot Topics in Operating Systems
(HotOS-VIII), May 2001.

[13] D. Liben-Nowell, H. Balakrishnan, and
D. Karger, “Analysis of the evolution of
peer-to-peer systems,” in ACM Conf. on Prin-
ciples of Distributed Computing (PODC),
Monterey, CA, July 2002.

[14] P. Buneman, S. B. Davidson, and D. Suciu, “Pro-
gramming constructs for unstructured data,” in
Proceedings of the Fifth International Workshop
on Database Programming Languages, Gubbio,
Umbria, Italy, Sept. 1995.

[15] S. Abiteboul, S. Cluet, and T. Milo, “Correspon-
dence and translation for heterogeneous data,” in
Proceedings of Database Theory - ICDT ’97, 6th
International Conference, ser. Lecture Notes in
Computer Science, vol. 1186. Delphi, Greece:
Springer, Jan. 1997.

[16] S. Abiteboul, “Querying semi-structured data,”
in Proceedings of Database Theory - ICDT ’97,
6th International Conference, ser. Lecture Notes
in Computer Science, vol. 1186. Delphi,
Greece: Springer, Jan. 1997.

[17] F. Dabek, M. F. Kaashoek, D. Karger, R. Mor-
ris, and I. Stoica, “Wide-area cooperative stor-
age with cfs,” in Proc. of the 18th ACM Sym-
posium on Operating Systems Principles (SOSP
’01), Chateau Lake Louise, Alberta, Canada,
Oct. 2001.

[18] A. Rowstron and P. Druschel, “Storage manage-
ment and caching in past, a large-scale, persistent
peer-to-peer storage utility,” in Proc. of the 18th
ACM Symposium on Operating Systems Princi-
ples (SOSP ’01), Chateau Lake Louise, Alberta,
Canada, Oct. 2001.

[19] The jxta project. [Online]. Available: http:
//www.jxta.org/

[20] H. S. Thompson, D. Beech, M. Maloney,
and N. Mendelsohn. (2001, May) Xml schema
part 1: Structures. [Online]. Available: http:
//www.w3.org/TR/xmlschema-1/

[21] P. V. Biron and A. Malhotra. (2001, May) Xml
schema part 2: Datatypes. [Online]. Available:
http://www.w3.org/TR/xmlschema-2/

Cop
y R

igh
ts 




