
E-Chord: Enhanced Chord-like Algorithm in Mediation Architecture

Qasem Kharma
Al-Ahliyya Amman University, Jordan

Qasem.kharma@gmail.com

ABSTRACT
E-Chord is a Distributed Hash Table algorithm (DHT) inspired from Chord, Pastry and CAN
algorithms. It meant to provide a keyword-based search in the Three-Layer Mediation Architecture.
The E-Chord is deployed in the middle layer (Integration Layer) of the architecture and provides
services to the higher layer (Presence Layer) and the lower layer (Homogenization Layer).

Key Words: mediation, Chord, P2P, Data Integration

1. Introduction
In the last few decades, the dependency on
accessing data from distributed data sources
has increased because of the distributed
nature of data and breakthroughs in
communication. Existing enterprises were
merged. New international businesses are
established. Governmental organizations need
to share information. Advancements in
communication, such as wireless, cable,
satellite, and fast Internet access make
accessing heterogeneous data viable.
Moreover, the Internet, which is a network of
networks of computers, provides rich data
sources. Therefore, sharing data is essential
nowadays. Unfortunately, in most cases each
individual data source has its own data
structures, platform, and design. As a result,
the integration of distributed heterogeneous
data sources is not a simple task. Huge
investments were made in each of those data
management systems; hence, the decision to
build a new integrated data management
system or enforce changes is often not a
practical solution.

A mediation architecture[25] was proposed as
a solution to integrate heterogeneous data
sources in a specific domain of knowledge by
adding a layer between the application layer
and the data sources in the system. A
mediation layer which handles the
responsibilities of accessing the

heterogeneous data sources and presents the
integrated data is placed between the data
sources and the application layers; therefore,
no changes need to be done in the layer of the
data sources. A client can query the system by
exploring the schema generated by the
mediation system. The data schema of a
specific source is called a local schema; the
mediation schema is called a global schema,
and it integrates and transforms several local
schemata. Although this solution is viable and
cost-effective, it is not very reliable since it
maintains either a global schema in a central
unit or a specific-domain schema in each
mediator. The existence of such a central unit
makes the system vulnerable to failure.

Our mediation architecture adopts a
distribution technique from Peer-to-Peer
(P2P) architectures called Distributed Hash
Table (DHT) algorithm in order to avoid
having a central failure unit in the system.
The proposed algorithm is a Chord-like
algorithm. We will refer to our enhanced
skip-list algorithm as E-Chord. The E-Chord
is deployed in the Integration layer.

2. Background
The background section covers two things:
the Three-Layer Mediation Architecture and
DHT algorithms.

2.1 Three-Layer Mediation Architecture

Cop
y R

igh
ts

The Three-Layer Mediation architecture
[8,10] which was designed by the Secure
System Architecture (SSA) laboratory at
Florida International University (FIU) was a
group research project directed by Dr. Ege.
Members of the project team were Kharma
(working on the architecture design, the
search algorithm [15], and the integration
process [14]), Yang (working on the
architecture design and security [27,26]), and
Ezenwoye (working on the global mediation
election [9]).

The architecture is to define and build a
multi-layered mediator-based multimedia
architecture that provides a dynamic, scalable
framework for telecommunications software
environments. It is capable of handling
complex data types and providing services to
various devices including mobile devices. The
architecture is based on three layers: a
“presence” layer takes requests from clients
and is responsible for caching and buffering
of streams that it receives from the
“integration” and “homogenization” layers.
The second layer is the “integration” layer
which is responsible for decomposing
requests, searching for the sources,
integration. The “integration” layer is
composed of a set of mediators called
“composers”. For each new session created
by a “presence” mediator, a composer is
elected to be a “global mediator” which is
responsible for communication with the
presence mediator and managing the request
processing. The third layer is the
“homogenization” where a connection to
actual data sources is established. The
“homogenization” layer is composed of a set
of connectors. On top of each data source, a
connector is placed to manage the access to
the data source. The common data model in
the architecture is based on XML. XML is a
semi-structured model that is capable of
handling structured and unstructured data.
XML request and its decomposition is done at
the “integration” layer which consists of
mediators that successively decompose an
XML request into smaller XML requests that

are closer to the data sources that are served-
up by the “homogenization” layer.

2.2 DHT algorithms
In the decentralized P2P systems where there
is no centralized unit and all nodes (peers)
have the same computation power, many
problems arise such as security, scalability,
administration, and more. Locating data files
in the distributed P2P environment is essential
since many systems are naturally distributed.
The most difficult challenge in P2P is how
data can be found in a large, scalable P2P
system without relying on a central server[1].
If this server fails, the system will fail. To
avoid having a central failure scenario, many
algorithms based on DHT were proposed in
the past few years. Instead of having a central
server, those DHT algorithms use a DHT in
which each node maintains some knowledge
about some other nodes (but not all). The
general purpose of these algorithms is to map
a value onto a key using a hash function.
Although the general format of the value is a
node IP address, the value can be any
meaningful value for the system to be built
such as document name.

Balakrishnan et al.[1] classifies DHT
algorithms into three categories:

1.Skiplist-like routing algorithm: The Chord

algorithm [23,24] is an example of skiplist-
like routing algorithm. In Chord, the hash
function assigns a m-bit (where m is the
number of the bits used for storing the key
in binary) identification key using Secure
Hash Algorithm (SHA-1) [17] as a base
function to map an IP address onto a key.
The nodes in the system are arranged in an
identifier circle. Each node on this circle
maintains a finger table containing the IP
addresses of 1-i2n + successors where n is
the node ID and m i1 ≤≤ . In other words,
this finger table maintains the IP addresses
of halfway, quarter-of-the-way, eighth-of-
the-way, and so forth.

2.Routing in multiple dimensions: The

scalable Content-Addressable Network

Cop
y R

igh
ts

(CAN) [19,18] is an example of routing in
multiple dimensions. Each node in CAN
maintains a chunk of the DHT called zone.
These zones are distributed in d-
dimensions. In addition to storing a chunk
of the DHT in the zone, each zone
maintains information about its neighbors in
the d-dimensions.

3.Tree-like algorithms: Tree-like algorithms,

such as Pastry [21,5], Tapestry [13], and
Kademlia [16], use a structured prefix to
maintain the location of nodes. Each node
maintains IP addresses of some other nodes
in its leaf. For instance, Kademlia algorithm
assigns 160-bit IDs to the nodes in the P2P
system and treats those nodes as leaves in a
binary tree.

3. Overview of Searching in the
Three-Layer Mediation Architecture
The design goal of our mediation architecture
is to avoid having any component that
constitutes a central point of failure. Unlike
MIX [3, 2] and Garlic [20, 4], our system
does not maintain a global schema, which is a
global view of the integrated data sources in
the system, in a central repository. Although
TSIMMIS [12,6] uses a distribution strategy
for its schema over specific domain chain of
mediators, each mediator maintains its own
global schema. Our architecture adopts a
distribution technique from Peer-to-Peer
(P2P) architectures called Distributed Hash
Table (DHT) algorithm. Enhanced Chord-
like (E-Chord) is a relaxed version of the
Chord algorithm .

Although the mediator-composers are
connected in a P2P fashion, the mediation
system has different characteristics from the
standard P2P systems. First, mediation
systems are usually domain specific systems.
They are deployed in a specific knowledge
domain to provide decision-makers with
information in that domain which may be
integrated from several sub-domains. Each
sub-domain may be composed of several
heterogeneous data sources. Some keywords,

which are key search criteria, may be
repeated. For instance, if the system is
deployed in a medical domain, the system
might be composed of data sources that
contain medical records, and insurance
information. In this scenario keywords, such
as patient, name, and SSN, will be frequently
repeated in queries. Second, the mediator-
composers are more stable than standard
peers in a P2P system. P2P systems were
originally intended for music files sharing
over the Internet. They created networks in
which peers join and leave arbitrarily.
Mediator-composers are more stable since
they could be run by either the data source
administrators or service providers.

The key operation in DHT algorithm is the
“lookup”. DHT algorithms are structured in
the sense that each node in the system is
responsible for a range. Before any action can
be taken, the node which is maintaining the
range of the desired action must be found. For
instance, when a new node wants to join the
system, its successor must first be looked up.
Then, the new node can join the system.

The E-Chord algorithm is a relaxed version of
the Chord algorithm. It combines features
from Chord [23,24], CAN [19, 18], and
Pastry [21,5]. The general structure is based
on the Chord structure. Like Pastry, the
adapted algorithm updates its routing
information when a node is discovered not to
be available. A frequency list is added to each
node instead of a neighborhood set. Finally,
like CAN, the data sources are responsible for
their pointers.

4. Routing Information
Like DHTs, the E-Chord algorithm uses the
Secure Hash Algorithm (SHA-1) as a hash
function. The SHA-1 generates nodes'
identifiers and keywords' identifiers. The
node identifiers are generated by running the
SHA-1 on a composition of the IP address
and the port number of each node while the
keyword identifiers are generated by running
SHA-1 on the keyword to be indexed in the

Cop
y R

igh
ts

system. The keywords' identifiers are
distributed over the first successor of each
keyword. As a result of using SHA-1, the
generated identifiers have 160 bits, and the
input is limited to bits. 642

The E-Chord algorithm maintains three sets
of routing information in each node. The first
set, like Chord, is the finger table which
contains 160 entries. The entries are points to
halfway, quarter-of-the-way, eighth-of-the-
way, and so forth. The entries in the finger
table can be found by first calculating the
estimated value from the formula for

and then finding the first actually successor of
the estimated value. The second set, like
Pastry's leaf set, maintains the immediate
successors and predecessors. The third set
maintains entries of the most frequent used
keywords. The connector on the top of the
data source maintains counters of the number
of times it was queried for its keywords.
When it sends the schema to the composer,
the frequency of each keyword in the schema
is sent along with the schema. Although the
connector is responsible for counting the
frequency, the entries in the frequency set
points to the composer which is responsible
for the range of the keyword, not to the
connectors. The composer checks the
frequencies assigned to the schema with the
ones stored in its set and adds any keywords
that have higher frequencies than the existing
frequencies in its set.

160i 1 ≤≤

160

1-i

mod2
)2 ode_id(current_nvalueestimated_ +=

When a global mediator receives a request
from a presence mediator, it adds to each
element in the request an identifier attribute
which contains the hashed value of the
keyword. Then, the elements are sorted in the
request according to the identifiers. After that,
the composer, either the global mediator or a
cooperating composer mediator, searches its
sets for each keyword in the following order:
1.The composer checks first if the keyword is

within its range. If the keyword is within its

range, it adds the connector_id to the
request and returns it to the global mediator.

2.The most frequently used keywords set: the
composer checks the set for an exact match.
If an exact match is found, the composer
forwards the request to the composer
responsible for the range of that keyword.

3.The composer checks the set of the
immediate successors and predecessors. If
the keyword is within the range of the
largest node identifier in the successor list
and the composer identifier, it means that
the keyword must be maintained by one of
the successors. In a similar approach, the
composer checks whether the keyword is
within the range of its predecessor list. If
the keyword is within the
successor/predecessor list, the composer
forwards the request to the composer that
maintains the range of the keyword.

4.Finally, if non of the previous steps finds
the composer that maintains the requested
range, the composer forwards the request to
the first node with an identifier that
immediately precedes the keyword's
identifier in the finger table.

Before the global mediator looks up the next
keyword, it checks whether the next keyword
identifier is within the range of the composer
maintaining the previous keyword. The global
mediator groups the set of the keywords
within the same range and forwards them in
one request to the composer. The composer
adds the connector_ids to the request and
returns it to the global mediator.

The E-Chord is a relaxed version of Chord; it
has a similar structure to the Chord algorithm.
It is a skip-list like algorithm. The finger table
and the frequency set help the composer to
skip as many as possible composers that
cannot help in solving the request. The
successor and predecessor set compose the
logical ring of the system; therefore, the
system has a ring geometry. Since the system
is using the SHA-1 algorithm, the composers
in the system are distributed over the logical
ring from range 0 to . 1-2160

Cop
y R

igh
ts

The size of the finger table is fixed while the
other two sets are runtime parameters. The
size of the finger tables is fixed to 160 entries
in each node because it is related to the
identifier size. The SHA-1 generates
identifiers of length 160 bits, so the maximum
number of entries that can be maintained in
the finger table is 160. The size of the
successor and predecessor set and the
frequency set are determined by the system
administrator. The size of successor and
predecessor set should be a reasonable size
according to the expected number of the
composers in the system. In the Chord
algorithm the successor list is recommended
to be of size where n is the expected
number of the nodes in the system. The size
of the frequency set should be reasonable
according to the expected number of the
keywords in the system.

n 2log2

5. Joining the System
There are two cases that affect the DHT in the
integration layer. The first case is when a new
composer joins the system. The second case is
when a new connector joins the system. The
former case affects the system by adding a
new composer to the P2P system; as a
consequence, this new composer will play a
role in routing and maintaining routing
information while the later case, adding a new
connector, adds new indexes to the DHT
tables. The connectors in the system do not
play any role in routing requests.

When a new composer wants to join the
system, it must first find another composer
which is already in the P2P system. There are
many bootstrapping techniques [11, p.18]
such as simple broadcast, selective broadcast,
and adaptive broadcast. In the simple
broadcast, the new peer sends a message to
every peer in the system. This technique
overloads the system with messages; as a
result, it consumes the bandwidth of the
system. Unlike simple broadcast, in the
selective broadcast the new peer sends a

message to selective peers in the system
based on predefined criteria such as trust
relationship in the selective broadcast
technique. Adaptive broadcasting is similar to
the selective one in the sense that both of
them try to minimize the consumption of the
network resources. However, adaptive
broadcasting needs to keep monitoring the
system for changes. The CAN algorithm [19,
18] uses a selective techniques in which a list
of nodes are maintained in a registered
domain. When a new node wants to join the
system, it retrieves the list and sends a
message to a node in the list. In our system,
we opt to enter an existing node IP address as
a parameter when creating a new composer.

Once the new node finds a composer in the
system, it sends a “join” message to that node.
The node treats the “join” message as a
“lookup”. It searches for the node responsible
for the range of the new node in a similar
fashion to finding a keyword (See Section 4).
Unlike searching for keyword, the process
will terminate once

Fig.1 Pseudocode for initializing the finger table

the composer maintaining the range of the
new composer is found, not the connector.
After finding the composer, the new
composer will be the immediate predecessor
of that node.

The next step is to initialize the lists. The
most important list for the system is the
successor/predecessor list. The importance of
this list is to keep the system's logical ring
connected all the time; so that, the routing to
the destination can be guaranteed. Once the
new node finds its position in the ring, it
obtains the successor/predecessor list from
the composer which is responsible for the
range of the new node. The new composer
will have exactly the same predecessor list as
the old one. The successor list is almost the

for i←1 to m do
 finger[i].start←node_id+ 2 1601 2mod−i

 if finger[i].start > finger[i].node
 finger[i].node=find successor(finger[i].start)
 %else no action is needed

Cop
y R

igh
ts

same except that the first successor is the old
composer. The new composer informs the
composer in the successor/predecessor list of
its arrival. If the size of successor/predecessor
list is 2r where r is a parameter defined by the
system administrator, the new node will sends
r messages to its successors to update their
predecessor lists and r messages to its
predecessors to update their successor lists.
The nodes in the successor/predecessor list
send their frequency list, so the new node can
construct its frequency list from those lists.
Finally the finger table is initialized from the
finger table of the predecessor. Unlike Chord,
our algorithm does not lookup all the entries
in the new finger table. The new composer
obtains a copy of the finger table of its
predecessor. Then, the new composer checks
whether the ranges of the entries are within
the current pointer values. The pseudo code
for initializing the finger table is listed in
Figure 1. The new composer notifies the
nodes which are expected to point to it in
their finger table using Chord's
“update_others” method [23]. The idea of the
“update_others” is to find the nodes that
precede the new composer by . That can
be done by finding the predecessor of
and then update the i entry in that node to
point to the new composer if the “i” entry
must point to the new composer.

1-i2
1-i2-n ,

When a new connector joins the system, it
will find an existing composer in the ring of
the system. An existing composer can be
found using the bootstrap techniques
explained earlier in this section. Unlike
adding a new composer, adding a new
connector will not affect the routing
information, but it adds new indexes to the
system. Once the connector finds a composer,
it sends its XML document. The composer
called distributor generates identifiers for the
keywords in the XML document. Then, it
sorts the keywords according to their
identifiers. After that, the distributor finds the
composer which is responsible for the range
of the keyword. This process is similar to
finding a keyword, but instead of returning a
connector it adds the keyword. The composer

which will index the keyword returns its
range for the distributor. The distributor
groups the keywords with the composer range
and sends them in one message. The
distributor repeats this process until all the
keywords are distributed.

Unlike CFS [7] which is a file storage for
blocks based on Chord and PAST [22] which
is a file storage for files based on Pastry, the
mediator does not distribute the data in the
data sources among the composer-mediator.
The mediator system needs only to distribute
pointers to the connectors on top of data
sources which will be accessed through
connectors. In other words, the composers
only cache the identifiers and the connectors'
IP addresses and socket numbers, and the data
can be accessed and retrieved directly from
the source through the connector.

6. Replication and System Recovery
The system has a self-recovery mechanism
when a composer fails. In order to preserve
the indexing from being lost, the system
maintains a replication of each composer's
indexes in its successors which are in its
successor list. Therefore, the system
administrator needs to consider a reasonable
size for the successor list. Assume that the
system administrator chooses size l for the
successor list, then the probability that all the
successors fail is l2

1 since the probability of

a successor failing is independent from the
others. Not only does composer failure affect
the keyword indexing, but also it affects the
routing in the system. Each node in the DHT
algorithm maintains information about a set
of other nodes in the system. When a node in
that set fails, the other nodes assist in routing
and recovering the set.

In most cases, when a composer leaves the
system, it will not notify the others. As a
consequence, the routing information
maintained in the finger table,
successor/predecessor list, and frequency list
may not be valid. However, the system is not

Cop
y R

igh
ts

aggressive in maintaining all the pointers
valid. The system will only keep the
successor list having valid pointers by
sending messages periodically to its
immediate successor to check its availability.
If the immediate successor does not respond,
the composer will contact the next successor
in the list. Then, the successor list will be
updated by receiving the successor list from
the first composer that responds to the
message.

If an entry in the frequency list was found not
to be valid, the composer removes this entry
from the list. The frequency list is meant to
help the composer to find a short-cut to the
destination composer based on historical
requests. However, since for each request the
global mediator is elected, the path from the
global mediator to the connector is built
dynamically. The connectors in the system
maintain counters of the frequencies of each
keyword in its source. The frequency counters
are returned with the schema to the composer,
so the composer will maintain the most
frequently used keywords from its frequency
list and the received schema. The frequency
list is built dynamically and may differ from a
composer to another.

The last case is an invalid entry in a finger
table. The system will lookup the successor of
the start interval of the failed entry. The start
of the interval is calculated by the equation

.
Then, the node looks up this value by
invoking “lookup(finger[i].start)”. The
“lookup” method returns the identifier of the
node which maintains the range of the
requested interval.

1601-i 2 mod)2id(composer_startfinger[i]. +=

The system needs to have at least one valid
pointer in each composer. If all the pointers in
the finger table fail, the composer can forward
the request to its successor using the
successor list. Even if the request is not
within the successor range, eventually the
destination will be reached. If all the finger
tables in the system fail, the lookup can be
done in O(n) messages by forwarding the

messages from a composer to its successor.
However, having the finger table can reduce
the number of messages to by
skipping half the distance closer to the
destination each time.

n) O(log2

7. Summary
We introduce in this research an enhanced
skip-list algorithm which is based on DHT to
cache the keywords in the mediation
architecture. The algorithm is a relaxed-
version of Chord algorithm called E-Chord
which uses features from CAN and Pastry
algorithms. A frequency list and
successor/predecessor list are added to each
node (composer) to enhance the routing
information. Unlike the Chord algorithm
which maintains only successor list, the
proposed algorithm maintains
successor/predecessor list. Moreover, each
node maintains a frequency list which is
composed of a list of most queried keywords.
A new initializing finger table method was
designed to minimize the number of message
in construction the finger table of a newly
joined node.

Although the new algorithm needs less
message in maintaining the system and
routing, it needs messages to find
each keyword. If a composer wants to look up
a keyword which does not exist within its
range or the frequency list, the composer uses
the finger table to route the request.
Therefore, it jumps half the distance closer to
the target, like Chord. Unlike Chord, the
enhanced algorithm uses relaxed repairing
mechanism for the finger table entries instead
of periodical checks. Our algorithm is not
aggressive in maintaining the finger table. An
action is taken if an entry in finger table is
found to be invalid.

n) O(log2

The most expensive operation from the time
complexity viewpoint is the sorting. The
global mediator performs sorting twice:
keyword identifiers sorting and connector_id
sorting. It takes to sort “e” e) log O(e 2

Cop
y R

igh
ts

elements in the XML document using merge
sort or binary sorting algorithm. The selection
algorithm is not as expensive as the sorting.
The selection can be done in O(l) where “l” is
the size of the lists in the composer.

References:

[1] H. Balakrishnan, M. F. Kaashoek, D.

Karger, R. Morris, and I. Stoica,
“Looking up data in P2P systems”,
Communications of the ACM, vol. 46
No. 2, Feb. 2003.

[2] C. Baru, V. Chu, A. Gupta, B.

Lud¨ascher, R. Marciano, Y.
Papakonstantinou, and P. Velikhov,
“XML based information mediation
for digital libraries”, In DL ’99:
Proceedings of the fourth ACM
conference on Digital libraries,
Berkeley, California, Aug. 1999, pp.
214 - 215.

[3] C. Baru, A. Gupta, B. Lud¨ascher, R.

Marciano, Y. Papakonstantinou, P.
Velikhov, and V. Chu, “XML-based
information mediation with MIX”, In
SIGMOD ’99: Proceedings of the
1999 ACM SIGMOD international
conference on Management of data,
New York, 1999, pp. 597 - 599.

[4] M. J. Carey, L. M. Haas, P. M.

Schwarz, M. Arya, W. F. Cody, R.
Fagin, M. Flickner, A. W. Luniewski,
W. Niblack, D. Petkovic, J. Thomas, J.
H. Williams, and E. L. Wimmers,
“Towards heterogeneous multimedia
information systems: the Garlic
approach”, In RIDE-DOM ’95 :5th
Int’l Workshop on Research Issues in
Data Engineering: Distributed Object
Management, 1995, pp. 124 - 131.

[5] M. Castro, P. Druschel, Y. C. Hu, and

A. Rowstron, “Topology-aware
routing in structured peer-to-peer
overlay network”, Technical Report

MSR-TR-2002-82, Microsoft
Research, 2002.

[6] S. S. Chawathe, H. Garcia-Molina, J.

Hammer, K. Ireland, Y.
Papakonstantinou, J. D. Ullman, and J.
Widom, “The TSIMMIS project:
Integration of heterogeneous
information sources”, In 16th Meeting
of the Information Processing Society
of Japan, 1994, pp. 7 – 18.

[7] F. Dabek, M. F. Kaashoek, D. Karger,

R. Morris, and I. Stoica, “Wide-area
cooperative storage with CFS”, In
SOSP ’01: Proc. of the 18th ACM
Symposium on Operating Systems
Principles, Chateau Lake Louise,
Alberta, Canada, Oct. 2001.

[8] R. K. Ege, L. Yang, Q. Kharma, and

X. Ni, “Three-layered mediator
architecture based on DHT”, In
ISPAN: 7th International Symposium
on Parallel Architectures, Algorithms,
and Networks, Hong Kong, May
2004, pp. 313 – 318.

[9] O. Ezenwoye, R. K. Ege, Q. Kharma,

and S. Siddique, “Electing a global
mediator in a three-layer mediator”, In
IEEE SoutheastCon 2005 Conference,
Ft. Lauderdale, Florida, Apr. 2005.

[10] O. Ezenwoye, R. K. Ege, L. Yang,

and Q. Kharma, “A mediation
framework for multimedia delivery”,
In MUM2004: Third International
Conference on Mobile and Ubiquitous
Multimedia, Maryland, Oct. 2004.

[11] R. Flenner, M. Abbott, T. Boubez, F.

Cohen, N. Krishnan, A. Moffet, R.
Ramamurti, B. Siddiqui, and F.
Sommers. Java P2P Unleashed. Sams,
first edition, 2002.

[12] H. Garcia-Molina, D. Quass, Y.

Papakonstantinou, A. Rajaraman, Y.
Sagiv, J. D. Ullman, and J. Widom,

Cop
y R

igh
ts

“The TSIMMIS approach to
mediation: Data models and
languages”, Journal of Intelligent
Information Systems, Vol. 8, No. 2,
1997, pp. 117 – 132.

[13] K. Hildrum, J. Kubiatowicz, S. Rao,

and B. Zhao, “Distributed object
location in a dynamic network”, In
Proc. of 14th ACM Symp. on Parallel
Algorithms and Architectures
(SPAA), Aug. 2002.

[14] Q. Kharma, R. K. Ege, O. Ezenwoye,

and L. Yang, “Data integration in a
three-layer mediation framework”, In
IEEE SoutheastCon 2005 Conference,
Ft. Lauderdale, Florida, Apr. 2005.

[15] Q. Kharma and R. K.Ege, “The

impact of using DHT in 3-layered
mediator framework”, In ICTIT:
International Conference on
Telecomputing and Information
Technology, Amman, Jordan, Sept.
2004.

[16] P. Maymounkov and D. Mazieres,

“Kademlia: A peer-to-peer
information system based on the XOR
metric”, In Proc. Of the 1st
International Workshop on Peer-to-
Peer Systems, Cambridge, MA, Mar.
2002. Springer-Verlag version.

[17] U. D. of Commerce. “Secure hash

standard”, Technical Report FIPS 180-
1, NIST National Technical
Information Service, Apr.1995.

[18] S. Ratnasamy, A Scalable Content-

Addressable Network, PhD thesis,
University Of California at Berkeley,
2002.

[19] S. Ratnasamy, P. Francis, M.

Handley, R. Karp, and S. Shenker,
“A scalable content-addressable
network”, In Proc. Of ACM

SIGCOMM, San Diego, CA, Aug.
2001.

[20] M. T. Roth, M. Arya, L. Haas, M.

Carey, W. Cody, R. Fagin, P.
Schwarz, J. Thomas, and E. Wimmers,
“The Garlic project”, In SIGMOD ’96:
Proceedings of the 1996 ACM
SIGMOD international conference on
Management of data, 1996.

[21] A. Rowstron and P. Druschel,

“Pastry: Scalable, distributed object
location and routing for large-scale
peer-to-peer systems”, In Proc. of the
18th IFIP/ACM Int’l Conf. on
Distributed Systems Platforms,
Heidelberg, Germany, Nov. 2001.

[22] A. Rowstron and P. Druschel,

“Storage management and caching in
past, a large-scale, persistent peer-to-
peer storage utility”, In SOSP ’01:
Proc. of the 18th ACM Symposium on
Operating Systems Principles,
Chateau Lake Louise, Alberta,
Canada, Oct. 2001.

[23] I. Stoica, R. Morris, D. Karger, M. F.

Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer
lookup service for internet
applications”, In Proc. of ACM
SIGCOMM, San Diego, Aug. 2001.

[24] I. Stoica, R. Morris, D. Liben-

Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H.
Balakrishnan, “Chord: A scalable
peerto-peer lookup protocol for
internet applications”, IEEE/ACM
Transactions on Networking, Vol. 11,
No. 1, Feb. 2003.

[25] G. Wiederhold, “Mediators in the

architecture of future information
systems”, Computer, Vol. 25, No. 3,
1992, pp. 38 – 49.

Cop
y R

igh
ts

[26] L. Yang and R. K. Ege, “Dynamic
integration strategy for mediation
framework”, In SEKE: Software
Engineering and Knowledge
Engineering, Taipei, Taiwan, Republic
of China, 2005.

[27] L. Yang, R. K. Ege, O. Ezenwoye,
and Q. Kharma, “A role-based access
control model for information
mediation”, In IRI: Proceedings of the
2004 IEEE International Conference
on Information Reuse and Integration,
Las Vegas, NV, Nov. 2004, pp. 277 –
282.

Cop
y R

igh
ts

