

A Mediation Framework for Multimedia delivery
Onyeka Ezenwoye, Raimund K. Ege, Li Yang, Qasem Kharma

School of Computer Science
Florida International University

Miami, FL 33199
Telephone: +01 – (305) – 348 -1038

{oezen001, ege, lyang03, qkhar002}@cs.fiu.edu

ABSTRACT
We present a conceptual mediation framework that features
three layers of mediators: presence, integration, and
homogenization layers that work together in a peer-to-peer (p2p)
manner to facilitate the delivery of multimedia data. On arrival
of each request for data from a client1, a global-mediator is
elected from a group of integration layer mediators to service
that request. Using distributed hash table (DHT), the global-
mediator dispatches the request to other integrator mediators to
track down the data sources. Upon receipt of the results, from
the source(s), the global-mediator presents the data to the client
via a presence-mediator. The presence-mediator may need to
reformat the data to suit the execution context of the client. This
mediation process is context -aware, adaptive and dynamically
structured. Quality of service (QoS) factors are taken into
consideration in the retrieval and presentation of data.

Keywords
Mediator, middleware, heterogeneous data sources, multimedia
delivery.

1. INTRODUCTION
The proliferation of the internet has enabled access, at least on a
physical level, to a multitude of disparate but often related
information, while scaling geographical barriers. This
information, in the form of multimedia data is stored on and
access from various kinds of heterogeneous devices, recently
more of which are mobile. Multimedia data requires special
attention to throughput, timeliness and other quality of service
factors. There is a need for architectures to deal with buffering
and the intermittent connection associated with mobility. Our
approach to enabling high quality access is to build a layered
framework of mediators [18]. Lower-layer mediators connect to
the actual data sources, while higher-layer mediators provide a
logical schema of information to applications.

Mediators are typically employed in a situation where the client
data model does not coincide with the data model of the
potential data sources. They are facilitators that search for likely
resources and ways to access them [17]. They provide a
mapping of complex models to enable interoperability between

client and source(s). Although many mediator systems have
been proposed for a variety of applications, a major problem
often encountered is how to seamlessly query and integrate data
from heterogeneous data sources. Hence there is a need to
formulate a mediator language that provides support for
complex and semi-structured data types; a language that allows
communication of knowledge between the mediator and source
as well as the mediator and the client [3].

To overcome the problems posed by heterogeneity of data
sources, the language of choice for our system is XML. XML is
clearly today’s standard of choice for the representation and
exchange of structured data, particularly where that data must be
read and interpreted by different applications running of
different kinds of devices. XML and XML Schema provide a
convenient, potentially human readable, easily extensible
representation standard. Therefore, all data exchanged between
mediators would be as XML.

In this paper we describe a three-layer architecture for
multimedia mediation. The paper is organized as follows:
Section 2 presents some related work and briefly covers some
differences and similarities between our architecture and
existing ones. Section 3 describes each layer and what functions
are performed therein. We also discuss the different classes of
mediators in those layers. Section 4 covers the election of global
mediators to handle specific queries and a brief overview of the
proposed election algorithm. Section 5 explains the various
classifications of Distributed Hash Table algorithms and their
use in looking up peers in p2p networks.

2. RELATED WORK
A lot of work has been done on mediation systems [4, 16, 19,
12, 9, 8, 7]. As stated in [9, 7], most of these architectures
however are centralized, in that, there is a single mediator
through which query decomposition, result integration and
access to heterogeneous sources is achieved. Like our
architecture, some [9, 16, 19] mediator architectures are
distributed and mediators are able to access and communicate
with each other. [19] is a two-tier mediation model that
comprises a homogenization and integration layer with
mediators in each that playing similar roles as in our
architecture. [9] on the other hand does not have any restrictions
on mediator functions as each mediator can play the role of
homogenization and/or integration. There is also no

1 The use of the word client does not necessarily mean desktop
PC. It could be any device with a digital heartbeat, mobile or
immobility.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MUM 2004, October, 27-29, 2004 College Park, Maryland, USA.
Copyright 2004 ACM 1-58113- 981-0 /04/10... $5.00

Cop
y R

igh
ts

restriction as to the number of mediator tiers. [9] and [19]
employ a similar integration process for homogenized sources
[9]. Our architecture is a three layer model that consists of the
presence, integration and homogenization layers. Our
architecture does not only accommodate heterogeneous data
sources but also with the aid of the presence layer mediators
adapts to the heterogeneous nature of the client devices by
taking into account various QoS issues of the client. [9] is a
peer mediation system much like ours but unlike our model, it
does not employ the use of the DHT in the distribution of source
schema and peer lookup.

3. THREE LAYER ARCHITECTURE
The proposed three-layer mediation architecture is to handle
requests (query or update) from a client which can be any
special device or mobile computing unit.

The framework features three layers; Presence, Integration and
Homogenization. A different class of mediator will be
implemented within each layer (see Figure 1). A device may
have all the three classes of mediators running on it at the same
time. The mediators will transfer and negotiate on three kinds of
information; the schema of the data stream, the type of operation
required (e.g. query or update) and some quality of service
(QoS) information specific to the client. The reason for
exchanging QoS information is so that data streams can be
tailored at the appropriate layers to suit the execution context of
the client device.

3.1 Presence Layer
The primary functions performed in this layer are:

1. Attach required QoS parameters to queries.

2. Election of global mediators to handle the requests.

3. Continuously advertise changes in QoS parameters to global
mediators.

At the inception of a user request, the system would create a
presence-mediator to handle that request. So there is one
presence-mediator for each request, a presence-mediator cannot
handle more than one request and the lifespan of an instance of a
presence-mediator is dictated by the duration for which the
request is valid. Upon receipt of a request, the presence-
mediator would conduct an election to elect a global-mediator
to serve that request.

A presence-mediator serves as a go-between for the client
device and the global-mediator for that request, continuously
monitoring the status of the device and for changes in its QoS
parameters. The request’s QoS specification is a translation of
the perceived execution context on the client application.

QoS management is essential to efficiently access pertinent
information at the required level of quality. This function
attempts t o meet the level of quality required by user.

1: query and/or client QoS information

2,3,4: query

5,6,7: query result

Figure 1. Three-Layer Architecture.

The continuous nature of the QoS management is especially
important in the event that the client device is mobile.
Resources are scarce on mobile devices and the availability of a
resource may vary significantly and unpredictably during the
runtime of an application. In the absence of resource guarantees
applications need to adapt themselves to the prevailing operating
conditions.

Presence mediators also have the job of converting the results of
the request from XML to a format that is required for the
particular client device.

In an ambulatory environment, for instance, a doctor might need
to get critical information about a patient. The doctor, armed
with a PDA with a wireless link, submits a query (Figure 2) to
retrieve the patient’s medical records.

<xs:schema xmlns:xs =
"http://www.w3.org/2001/XMLSchema">
 <xs:element name = "query">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="patient_record" >
 <xs:element name="patient_id" >
 <xs:element name="name" >
 <xs:element name="date_of_birth">
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Figure 2. An example schema of a request for patient
records.

Cop
y R

igh
ts

Upon receipt of the query, the presence-mediator modifies the
query by attaching the PDA’s QoS parameters as illustrated in
Figure 3.

<xs:schema xmlns:xs =
"http://www.w3.org/2001/XMLSchema">
 <xs:element name = "query">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="patient_record" >
 <xs:element name="patient_id" >
 <xs:element name="name" >
 <xs:element name="date_of_birth">
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name = "qos">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="resolution" >
 <xs:element name="color_depth" >
 <xs:element name="bandwidth" >
 <xs:element name="power" >
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Figure 3. Modified schema of the request for patient records
with QoS criteria.

3.2 Integration Layer
The mediators that comprise this layer are known as mediator-
composers. These are the basic building blocks of the system.
For a device to be considered a peer, it must implement a
mediator-composer . It is this mediator-composer that upon
receipt of a user request creates a presence-mediator for that
particular request. Thus, the presence layer described in 3.1
only exists if there is at least one request being handled.

This layer is vital for the ability of the system to process queries.
Because query processors may need to reformulate an initial
query to enhance the chance of obtaining relevant data [1], this
layer of mediators may need to translate the XML schema of the
query into the schemas supported by other mediators. Because
the mediators are p2p, each mediator will have specific
knowledge about the supported data and schemas of its
“neighbor” mediators. In the event that the global-mediator2 (or
other mediator-composers) has no knowledge about others’
schema, the original schema is forwarded to its known peers
(line 2 in figure 1) unaltered.

In other words, mediator-composers have the ability to re-
construct XML schemas for requests. When a mediator-
composer receives a request, it may need to simplify the request
before forwarding it. If the mediator-composer has some
knowledge about the request, it simplifies the request according
to its knowledge. The global-mediator is informed whenever the
schema of its request is altered. The global-mediator keeps
track of where what is found with the use of a “mediated
schema”. This mediated schema will also be used to reassemble
the results of the query that were obtained from different sources
and further query.

The integration layer basically reformulates the client request
into a set of queries over the data sources using the appropriate
schemas. Mediator-composers set up contracts between

2 When a mediator-composer is elected to serve a request, it
becomes the global-mediator for that request

multiple data sources in order to satisfy requests. They are in
charge of finding systems that meet the specified QoS criteria.

3.3 Homogenization Layer
In our architecture, each mediator-connector (homogenization
layer mediator) will be directly associated with a physical
source. Note that (as stated in section 3) that a device can have
all three types of mediators on it. A mediator-connector is
implemented only if it is associated with a persistent data
source.

Mediator-connectors do not change the XML for the request;
they retrieve data from data sources and converts query result
into a stream of XML data which is submitted to the global-
mediator for the request (line 6 in figure 1).

Data from relational databases can be mapped to XML by table-
based mapping. The advantage of this mapping is its simplicity:
because it matches the structure of tables and result sets in a
relational database. This type of mapping however has several
disadvantages; primarily, it only works with a very small subset
of XML documents. It also does not preserve physical structure
(e.g. character and entity references, CDATA sections, character
encodings, and standalone declaration) or document information
(e.g. document type or DTD), comments, or processing
instructions.

Because table-based mappings only works with a limited subset
of XML documents, some middleware tools, most XML-
enabled relational databases, and most XML-enabled object
servers use a more sophisticated mapping technique called
object-relational mapping. This models the XML document as a
tree of objects that are specific to the data in the document; it
then maps these objects to the database.

Most XML schema languages can be mapped to databases with
an object-relational mapping. The exact mappings depend on the
language.

4. GLOBAL MEDIATOR ELECTION
Once the presence-mediator (in the presence layer) receives a
request for which it was instantiated, it creates an XML schema
for this request coupled with some QoS criteria specific to its
client device and that’s best suited for that type of request. The
presence-mediator then conducts an election to select a
mediator-composer (in the integration layer) to be the global-
mediator for that request. The election is conducted in order to
find the best possible mediator-composer to serve the request.
Selection criteria include but are not limited to available
bandwidth, network traffic and load. The elected mediator will
be the one that best meets the required QoS criteria and is able
to carry out the search, cache, integrate and return the result. In
explaining the mediator election, it is important to note that:

A peer knows at least one other peer otherwise the system
isn’t p2p.
1. A mediator-composer can be elected to serve as global-
mediator for more that one request at the same time.

2. Each request is serviced by only one global-mediator.

3. In the event that a global-mediator fails, another one is
elected.

Cop
y R

igh
ts

As of this writing, our election algorithm of choice is the ring
algorithm. Our ring algorithm is based on the ring algorithm
[15] with some modifications.

 Figure 3: The Ring Election Algorithm.

For the purpose of clarity, we will use Figure 3 above to
illustrate the algorithm. It is also important to note that for the
purpose of brevity, the following description has been
simplified. The election message is a 3-tuple [i, j, k], where i =
election initiator; j = best candidate so far; k = hop count. The
hop count is used to make sure that the election message does
not travel perpetually because a p2p network may not actually
be physical ring.

When there is a need to elect a global-mediator, the peer that is
initiating the election (node 1) sends an election message to its
successor. In Figure 3, node 1 sets i and j to 1, thereby making
itself a candidate for the election. k = 6 for the purpose of
illustration. By setting j to 1, we mean that node 1 attaches to
the election message its status information. This could be
information such as load and bandwidth. It is possible for the
initiating node to be elected because (as stated in section 3.2), a
mediator-composer must reside on the physical device for that
device to be considered a peer. It is this mediator-composer that
creates the presence-mediators (section 3.1) to handle requests.
A presence-mediator - in its quest to find the best suitable peer
(mediator-composer) to act as global-mediator for the query -
may end up electing the same mediator-composer that created it.
Thus electing its own peer.

Upon receipt of the election message, the receiving node
compares the status information contained in the election
message with its own status information. If it determines that its
status is superior to that which is contained, it replaces the status
information with its own (e.g. node 2 in figure 3). It checks to
see that the k > 0 then forwards the message to its successor
after reducing the hop count by 1. If its successor is down (e.g.
node 3 in Figure 3), the message is sent to the next successor.
The election only terminates in these three cases:

1. If a node’s only successor is down, the message is sent to i
and j is elected.

2. If k = 0, the election message is sent to i and j is elected.

3. If a node’s successor is i (a ring), j is elected.

In our example in Figure 3, node 6 is elected as global-mediator.

5. PEER LOOKUP
After electing the global-mediator, the global-mediator will
coordinate with other mediator-composer(s) and/or mediator-
connector(s), in order to serve the request. Interaction between
mediators is P2P in which peers share distributed files. The
most recent lookup algorithms for P2P system are based on
distributed hash table (DHT). In general, these algorithms
routing time complexity is O(log N) where N is the number of
nodes (peers) in the system. [2] classifies DHT algorithms into
three categories:

1. Skiplist-like routing algorithm:

Chord algorithm [14] is an example of skiplist-like routing
algorithm. In Chord, every node in the system maintains
information about O(log N). The hash function assigns an m-bit
identification key using SHA-1 as a base function to map the IP
address. The nodes in the system are arranged in an identifier
circle. Each node on this circle maintains a finger table
containing the IP addresses of n+2i-1 successors where n is the
node ID and 1<= i <= m. In other words, this finger table
maintains the IP addresses of halfway, quarter-of-the-way,
eighth-of-the-way, and so forth. As a result this algorithm can
find the required node in O(log N) time.

2. Tree-like algorithms:

Tree-like algorithms, such as Pastry [13], Tapestry [6], and
Kademlia [10], use structured prefix to maintain the location of
nodes. Each node maintains IP addresses of some other nodes in
its leaf.

3. Routing in Multiple dimensions:

CAN [11] is an example of routing in multiple dimensions. Each
node in CAN maintains chunk of DHT called zone. These zones
are distributed in d-dimension. In addition to storing a chunk of
DHT in the zone, each zone maintains information about its
neighbors in the d-dimension. The routing time complexity for
this algorithm is O(d N1/d).

The reader can observe that these algorithms are similar in the
following aspect:

1. With the use of DHT, each node maintains information about
its neighbors only, not all the nodes in the system

2. Their time complicity for routing is O(log N) for most of
them.

These algorithms however differ in many aspects, but the most
important difference is how each algorithm determines
“neighbor”. In general, each node should maintain minimum
knowledge about other nodes in the systems. A hash function,
i.e. SHA-1, maps keys onto values where values could be file
names, IP addresses, or any naming to be looked up. In our case,
we are interested in mapping XML schema tags and we will use
Cord algorithm [14] because of its performance [5] in
comparison to other algorithms.

In order for a new node to join the system and become a peer, it
will send a “join” message [14]. After locating the position of
this node, the new node will join the P2P system as a composer.

Cop
y R

igh
ts

This new peer may have an associated mediator-connector if
there is an associated database.

Despite of the role of global-mediator in the presentation, all
mediator-composers need to cooperate in order to find the
connector(s) (mediator-connectors) to the desired data source(s).
To find the connectors(s), the route from the global-mediator
through composers can be found using DHT instead of having a
central repository of the connectors’ XML schemas. All
messages between mediators are in XML format and each
composer maintains some XML schema which will be used to
decompose/compose the XML request in order to match a XML
schema that is stored in a connector. The hash function maps the
XML tags or elements onto keys which will be distributed over
the peers. Assume the following is a valid XML schema:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/XMLSchema">
 <xs:element name="PatientXrays">
 <xs:complexType>
 <xs:attribute name = “ssn” type=”xs:string”>
 <xs:attribute name="fullname" type=”xs:string”>
 <xs:attribute name="xray" type=”xs:image”>
 </xs:complexType>
 </xs:element>
</xs:schema>

The hash function maps ssn, fullname3, and xrays ont o keys
which will be distributed over the peers (mediator-composers).
Mediator-composers will generate the XML tree for the XML
schemas which have been sent from mediator-connectors to be
mapped. Mediator-composers hash the nodes, which correspond
to elements in the XML schema in the corresponding tree and
distribute the generated key with the element to a node in the
system which maintains the range of that key.

The mediator-composers decompose the incoming request or
simplify the incoming request by adding subtree(s) to the
original request until all the tree leaves represent connectors. In
decomposing a query, if the global-mediator which has been
elected to handle this request cannot solve the FullName for
instance, it will forward the request to one of its neighbors.
Eventually, one of the composers will decompose the FullName
into FirstName and LastName. After that, all the leaves in the
tree can be directed to the corresponding connector using the
DHT.

6. CONCLUSION AND FUTURE WORK
The interchange of data between client and heterogeneous
sources requires an efficient and dynamic approach to
mediation. The framework described in this paper features three
layers of mediators: presence, integration, and homogenization.
On arrival of a request for data, a mediator-composer is elected
as global-mediator that is responsible for data caching and
service provision. The global-mediator dispatches the data
stream request to other mediator-composers in order to track

3 Some elements in the client XML schema might need to be
decomposed; i.e. the fullname could be decomposed into
lastname and firstnamae, and that way multiple composers may
cooperate to serve the client.

down the adequate sources. The results are then integrated and
sent back to the user in a way that best suits the execution
context of the user device.

The advantage of our mediation process is its adaptive and
dynamic nature. The framework is designed to uniquely
determine how to fulfill each query while taking properties of
delivery into consideration. The presence-mediator takes into
account the heterogeneous nature of client devices and is meant
to tailor the query formulation and presentation of results to suit
the execution context of the client. This is especially important
for mobile devices give their limited resources. Our mediation
architecture is a work-in-progress and there are many research
issues that will encountered during the course of this project,
they include but not limited to, defining of communication
protocols with specific focus on QoS, how to deal with real-time
data and mobility (e.g. temporary loss of connectivity in mobile
devices, failure of the global-mediator), security issues involved
with the distribution and access of data across a p2p network
and how to intelligently decompose and integrate XML schemas
while avoiding loss of information.

7. REFERENCES
[1] Arens, Y., Knoblock, C. and Shen, W. Query

Reformation for Dynamic Information Integration.
Journal of Intelligent Information Systems: Integrating
Artificial Intelligence and Database Technologies ,
1996;6(2-3):99-130.

[2] Balakrishnan, B., Frans Kaashoek, M., Karger, D.,
Morris, R. and Stoica, I. Looking up data in P2P
systems, Communications of the ACM,volume 46 , Issue
2, February 2003.

[3] Buneman, P., Raschid, L. and Ullman, J. Mediator
Languages – a Proposal for a Standard, Report of
DARPA I3/POB working group, University of Maryland,
1996.

[4] Garcia-Molina, H., Papakonstantinou, Y., Quass, D.,
Rajaraman, A., Sagiv, Y., Ullman,Y. D., Vassalos, V.,
and Widom, J. The TSIMMIS approach to mediation:
Data models and languages. Journal of Intelligent
Information Systems, 8(2):117 - 132, 1997.

[5] Gummadi, K., Gummad, R., Gribbl, S., Ratnasam, S.,
Shenke, S., and Stoica, I. The Impact of DHT Routing
Geometry on Resilience and Proximity. In Proceedings
of SIGCOMM’03, August 25–29, 2003, Karlsruhe,
Germany.

[6] Hildrum, K., Kubiatowicz, J., Rao, S., and Zhao, B.
Distributed Object Location in a Dynamic Network. In
Proceedings of 14th ACM Symposium. on Parallel
Algorithms and Architectures (SPAA), August 2002.

[7] Josifovski, V., and Risch, T. Comparison of Amos II
with other Integration Projects, Technical Report,
EDSLAB/IDA, Linköping University, April 1999

[8] Karjalainen, M. Integrating Heterogenous Databases
with the Functional Data Model Approach,
http://www.cs.chalmers.se/~merjaka/report04d.pdf,
January, 2004

[9] Katchaounov, T. Query Processing for Peer Mediator
Databases , Doctoral thesis, Uppsala University, 2003

Cop
y R

igh
ts

[10] Maymounkov, P., and Mazieres, D. Kademlia: A peer-
to-peer information system based on the XOR metric. In
Proceedings of the 1st International Workshop on Peer-
to-Peer Systems, Springer-Verlag version, Cambridge,
MA, Mar. 2002.

[11] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and
Shenker, S. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM, San Diego, CA, August
2001.

[12] Risch, T., Josifovski, V., and Katchaounov, T. AMOS II
Concepts,
http://www.dis.uu.se/~udbl/amos/doc/amos_concepts.html,
June 23, 2000

[13] Rowstron, A., and Druschel, P. Pastry, Scalable, distributed
object location and routing for large-scale peer-to-peer
systems, In Proceedings of the 18th IFIP/ACM Int'l Conf.
on Distributed Systems Platforms, Heidelberg, Germany,
pages 329-350, Nov. 2001.

[14] Stoica, I., Morris, R., Karger, D., Frans Kaashoek, M., and
Balakrishnan, H. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proceedings of ACM
SIGCOMM, San Diego, August 2001.

[15] Tanenbaum, A. S., Van Steen, M. Distributed Systems:
Principles and Paradigms. Pearson Education, September
2001, page 263.

[16] Tomasic, A., Raschid, L., and Valduriez, P. Scaling access
to heterogeneous data sources with DISCO. IEEE
Transactions on Knowledge and Data Engineering, 10: 808
– 823, 1998.

[17] Wiederhold, G., and Genesereth, M. The Conceptual Basis
for Mediation Services. IEEE Expert, Vol.12 No.5, Sep.-
Oct. 1997, pages 38-47

[18] Wiederhold, G., Mediators in the Architecture of Future
Information Systems, IEEE Computer, 25(3):38–49, Mar.
1992

[19] Yan L., Tamer Özsu, M., Liu, L., Accessing Heterogeneous
Data Through Homogenization and Integration Mediators,
In Proceedings of the Second IFCIS International
Conference on Cooperative Information Systems, pages
130-139, June 24-27, 1997

Cop
y R

igh
ts

